
Alleviation of Disk I/O Contention in Virtualized
Settings for Data-Intensive Computing

Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara
Department of Computer Science

Colorado State University, Fort Collins, Colorado, USA
Email: {malensek, sangmi, shrideep}@cs.colostate.edu

Abstract—Steady growth in storage and processing capabilities
has led to the accumulation of large-scale datasets that contain
valuable insight into the interactions of complex systems, long-
and short-term trends, and real-world phenomena. Converged in-
frastructure, operating on cloud deployments and private clusters,
has emerged as an energy-efficient and cost-effective means of
coping with these computing demands. However, increased collo-
cation of storage and processing activities often leads to greater
contention for resources in high-use situations. This issue is
particularly pronounced when running distributed computations
(such as MapReduce applications), because overall execution
times are dependent on the completion time of the slowest task(s).

In this study, we propose a framework that makes opinionated
disk scheduling decisions to ensure high throughput for tasks
that use I/O resources conservatively, while still maintaining
the average performance of long-running batch processing op-
erations. Our solution does not require modification of client
applications or virtual machines, and we illustrate its efficacy on
a cluster of 1,200 VMs with a variety of datasets that span over 1
Petabyte of information; in situations with high disk interference,
our algorithm resulted in a 20% improvement in MapReduce
completion times.

Index Terms—Data-intensive computing, I/O interference, big
data, distributed I/O performance

I. INTRODUCTION

Stored data volumes have grown at a remarkable rate due to
the proliferation of sensors, observational equipment, mobile
devices, e-commerce, and social networks. A study from IDC
suggests that storage requirements will breach 40 ZB by 2020,
with cloud and big data analytics solutions growing three
times faster than on-premise solutions [1]. These analytics
jobs, typically expressed as MapReduce computations [2],
operate on voluminous datasets that span multiple disks.
The most popular software stack for achieving this is the
Apache Hadoop [3] ecosystem that includes the core Hadoop
MapReduce framework, HDFS for scalable storage [4], Hive
for data summarization [5], and Pig [6] for expressing analysis
tasks using high-level constructs.

Growth in data volumes has coincided with improvements
in stable storage, available CPU cores, and memory capacities.
Increased densities and capacities of stable storage, both
electromechanical hard disk drives (HDDs) and solid state
drives (SSDs), allow ever greater data volumes to be stored at a
single node. These factors have led to increases in the number
of processes that concurrently execute on a given node, which
in turn increases the degree of contention for resources.

Disk I/O contention incurs higher costs in terms of latency
and throughput than either CPU or memory contention, and
adversely impacts completion times and throughput for data-
intensive tasks. This stems from the nature of the underly-
ing storage technology and associated seek times of HDDs,
which are six orders of magnitude slower than CPU clock
cycles. With mechanical disks, processes often contend for
a single disk head. Stable storage must also satisfy different
performance objectives; for example, in the case of HDDs the
objective of disk scheduling algorithms is to minimize disk
head movements, while in the case of SSDs the objective
is to minimize write amplifications and make considerations
for wear leveling. In both cases, buffering and merging the
requests can help increase throughput while minimizing disk
head movements and write amplifications.

Data-intensive analytics tasks are typically performed in
public or private clouds where resources are provisioned as
Virtual Machines (VMs). VMs offer excellent containment and
isolation properties while coping with issues relating to sim-
plifying software dependencies, and can be scaled elastically
as demand fluctuates.

A. Research Challenges

Our research objective for this work is to ensure high-
throughput completion of data-intensive tasks in both virtu-
alized and non-virtualized settings while ensuring long-term
fairness across processes and VMs. Challenges involved in
accomplishing this include:

• Applicability: no changes must be made to the virtual ma-
chines or client processes to benefit from our framework.
We must avoid requiring client-side software libraries,
message passing, or custom kernels.

• Over-provisioning: one of the key features of cloud de-
ployments is the ability to run several services on a single
machine under loose resource provisioning constraints.
However, over-provisioning also increases contention be-
tween collocated VMs.

• Long-term fairness: private and public clouds often
involve multiple, concurrent analytics jobs being executed
at the same time with different mixes of I/O and comput-
ing activities. Rather than focusing on fairness at a given
point in time, we allocate resources based on long-term
usage patterns.



B. Research Questions
Key research questions that we explore in this study include:
1) How can we minimize I/O contention between collo-

cated VMs?
2) How can we detect and avoid disk access patterns that

are known to reduce overall I/O throughput?
3) How can we ensure fairness across a set of analytic

tasks? This involves profiling the mix of client disk I/O
and processing activities and then making appropriate
scheduling decisions to prioritize certain processes.

4) How can we achieve high throughput across a cluster
while avoiding resource starvation?

This paper includes empirical evaluations that profile the
efficiency of our proposed framework to address these research
questions. We also compare and contrast with the current
state-of-the-art in our literature survey in Section II. Often,
deficient approaches: (1) require modifications to the VMs,
with inclusion of device drivers to boost the priority of favored
VMs, (2) involve custom kernels at the hypervisor level,
or (3) require client software or libraries to be packaged
alongside the analytic tasks. None of these approaches take
a holistic view necessary for orchestrating analytics jobs that
target alleviating disk I/O interference at any given node while
accounting for the mix of tasks that execute at a particular
physical machine. In data-intensive computing, job completion
times are often determined by the slowest constituent tasks.

C. Approach Summary
Our framework, Fennel, runs as a system daemon and aims

to reduce disk I/O interference and ensure high-throughput
processing. This involves: (1) profiling VMs to identify their
disk usage patterns, (2) creating of resource group classes to
reflect priority levels, (3) dynamically adjusting these priority
levels based on VM profiles to influence decisions made by
the native disk I/O scheduler. In this study we work with the
Linux kernel and the corresponding VMs and containers that
execute in Linux clusters; Linux is the dominant OS used in
cloud settings and accounts for 75% of the installations in
data centers [7]. Figure 1 illustrates where Fennel exists in
the hardware/software stack: the framework operates as a user
space daemon and communicates with the OS disk scheduler
through kernel interfaces.

Rather than striving to be fair to all processes accessing
the disk at a given point in time, our algorithm introduces a
scheduling bias towards applications that use the disk infre-
quently or in short, concise bursts. This approach boosts the
performance of applications that read or write relatively small
amounts of data on a periodic basis, while still preserving
the long-term average performance for applications that use
the disk frequently or deal with large files. We use the Linux
cgroup functionality to create “resource classes.” Our default
configuration divides processes into 10 weight classes, with 10
representing the highest priority and 1 representing the lowest
priority. Our framework then uses the Linux CFQ sched-
uler [8] to dynamically tune process (and process group) disk
scheduling priorities at run time.

Kernel

Hardware

I/O SchedulerHypervisor

VM 1 VM 2 . . . VM N FennelFennel

Fig. 1. An overview of the Fennel system architecture. Fennel operates
independently above the OS kernel and disk scheduler as a user space
application, passing dynamic scheduling directives to the kernel layer based
on interactions and requirements of client software (VMs or other processes).

A related aspect of ensuring fairness is how long to penalize
a process for its disk usage. If a process slows down or pauses
its disk use, its priority will slowly increase at a configurable
rate. In our default configuration, each time quantum that
passes with no I/O activity from a process decreases its
cumulative disk I/O counter by 50% of the increment used
for decreasing the priority. This ensures that several collocated
processes or VMs performing similar amounts of disk I/O will
have a similar priority.

We run an instance of the Fennel daemon at each physical
machine. The scheduler polls the system resource counters for
disk accesses on a configurable interval (once per second by
default). This returns the processes that have performed I/O
during the last second. The daemon manages resource counters
that accumulate as processes perform I/O operations, and then
adjusts their scheduling weights based on a configurable set of
rules. After inspecting the current I/O state, Fennel removes
records of processes that have terminated and updates the
weights of tasks that have not performed disk operations
during the previous quantum, if applicable.

Our empirical benchmarks profile the performance of our
framework in virtualized settings with data-intensive tasks
executed using Hadoop. Our benchmarks report on the per-
formance with and without our framework, as well as in
single-machine and distributed settings. We have performed
this evaluation with a mix of jobs running within the cluster,
and were able to improve MapReduce task completion times
by 20% in a scenario with high disk contention.

D. Paper Contributions

This paper demonstrates the feasibility of reducing disk
I/O interference in virtualized environments while preserving
high-throughput completion of data-intensive jobs and tasks.
Specifically, our contributions include:

• Dynamic tuning of priority levels based on usage patterns.
• Detection of disk access patterns that are detrimental

to overall throughput. Specifically, access patterns that
perform excessive seek operations on rotational media
will be penalized.

• The ability to ensure fairness across processes without
compromising on throughput.



• Fennel is broadly applicable and does not require mod-
ifications to the VM or the hypervisor kernel, inclusion
of device drivers, or custom APIs.

• Changes to priority levels are constant-time operations
and bookkeeping data structures used to track I/O usage
patterns are efficient.

• Fennel reduces the number of stragglers in MapReduce
jobs and lowers the amount of speculative tasks that will
be launched at run time.

E. Experimental Setup

The benchmarks carried out in this study were run on a
heterogeneous, over-provisioned private cloud consisting of
1,200 VMs. Each VM was allocated a single processor core,
512-1024 MB of RAM, access to a bonded gigabit network
link, and a virtual hard disk for storage. Host machines ran
Fedora 21 and the KVM hypervisor, with guest VMs running
a mixture of Fedora 21 and Ubuntu Server 14 LTS. Host
machines included 40 HP DL160 servers (Xeon E5620, 12
GB RAM), 30 HP DL320e servers (Xeon E3-1220 V2, 8 GB
RAM), and 5 HP Z210 workstations (Xeon E31230, 12 GB
RAM). Each physical machine in the cluster was equipped
with four disks.

We used a variety of datasets to benchmark the performance
of our framework in a data-intensive computing environment.
This included over 100 TB of website data from the Common
Crawl [9], 10 TB of system logs collected from 300 work-
stations in a lab environment, raw feature data and graphical
tiles generated from the NOAA North American Mesoscale
Forecast System (NAM) [10] totaling 1 Petabyte.

F. Paper Organization

The rest of the paper is organized as follows. Section II
outlines related work in disk I/O schedulers and other types
of scheduling control schemes. Section III describes how
disk scheduling is implemented in the Linux kernel, and
provides insight into the different types of tradeoffs the various
schedulers manage. Section IV provides a detailed overview
of the functionality and components in Fennel, followed by
Section V with a thorough performance evaluation of our
algorithms in both single-machine and distributed settings.
Finally, we conclude the paper and outline our future research
directions in Section VI.

II. RELATED WORK

Considerable research has been conducted on operating
system disk I/O scheduling, including simple first-come, first-
served (FCFS) queuing approaches, rotationally-aware algo-
rithms [11], [12], [8], and, most recently, schedulers that
specifically target flash-based disks [13], [14], [15]. Section III
provides a detailed overview of current scheduling technolo-
gies and the trade-offs associated with them; our framework
operates above the I/O scheduler level and is broadly appli-
cable across scheduling implementations, provided that they
include a weighted prioritization mechanism. One primary
differentiator of Fennel is its concept of fairness: while a fair

scheduler may ensure that each process gets a share of the
disk at a given point in time, Fennel targets long-term fairness
where processes that use a disproportionate amount of disk
resources overall are assigned a lower priority than others.

VM-PSQ [16] addresses I/O prioritization in the context of
virtualization by acting as an agent for VM I/O that is separate
from the system disk scheduler. In this approach, queues are
created for each VM and then a backend driver on the host
machine uses a token scheduling algorithm to distribute time
slices to each VM based on configurable token weights. Client
VMs communicate with the backend driver through a frontend
driver that coordinates I/O operations. Since VM-PSQ focuses
on VM I/O instead of the entire system, it is able to achieve
lower variance in disk performance between competing VMs
when compared to the default Linux scheduler (CFQ [8]).
While our approach also assigns I/O weights, it operates above
the scheduling layer and is designed to dynamically address
long-term fairness rather than strict short-term fairness.

Similar to VM-PSQ, IO QoS [17] employs a back-
end/frontend driver scheme to intercept I/O operations from
guest virtual machines and then places the requests into
per-VM queues. It uses a combination of the leaky bucket
algorithm [18] to control I/O speeds and weighted fair queuing
(WFQ) [19] to prioritize different virtual machines based on
user QoS (quality of service) requirements. Both VM-PSQ and
IO QoS are designed strictly for virtual machines, whereas our
approach targets I/O across all processes on a system.

Virtual I/O Scheduler (VIOS) [20] is a “scheduler of sched-
ulers” that assigns each application a quantum of time for
accessing the disk. This constraint acts as a hard limit on per-
process I/O, which ensures fairness at a coarse-grained level.
To provide fine-grained fairness or QoS for particular pro-
cesses (including virtual machines), VIOS also allows a second
I/O scheduler to be assigned on a per-application basis. This
fine-grained scheduler can be selected based on application
requirements or hardware characteristics. For hardware that
supports tagged command queuing (TCQ) or native command
queuing (NCQ), the VIOS(P) variant of the scheduler supports
issuing multiple commands to the disk controller in parallel,
improving performance. VIOS could be used as the underlying
scheduler in Fennel by either implementing a Linux control
groups interface or using Fennel interfaces to communicate
with the scheduler directly.

Range-BW [21] combines the proportional scheduling of
VM-PSQ with a Linux device-mapper driver, dm-ioband, to
provide predictable I/O bandwidth. To facilitate predictabil-
ity, the desired minimum and maximum bandwidth can be
specified for processes and changed at run time. Similar to
our framework, Range-BW does not depend on a particular
scheduler implementation and employs Linux control groups
for managing groups of processes. On the other hand, Fen-
nel is designed to modify and update scheduling priorities
autonomously at runtime without prior knowledge of the
workloads it will manage (which may also follow temporal
trends or change as different virtual machines or applications
are deployed to the cluster).



III. LINUX DISK SCHEDULING

The latest Linux kernel (version 4.1.3 at the time of
writing) includes three disk I/O schedulers: noop, deadline,
and CFQ (Completely Fair Queueing [8]). CFQ is currently
the default scheduler for most Linux distributions, supplanting
the previous default, Anticipatory Scheduling (AS). In general,
disk schedulers improve I/O performance by reordering and
batching requests before they are sent to the underlying
hardware; if requests are transferred immediately to the
disk controller, excessive seeking could occur in the case of
mechanical disks, or processes may suffer from I/O starvation.
The active scheduling algorithm can be changed at run time
on a per-device basis to account for hardware characteristics
and variations in workload requirements.

While using a disk scheduler is beneficial in most cases,
there are some exceptions. These instances are handled by
the noop (no operation) scheduler, which queues and merges
incoming requests before transferring them directly to the
underlying hardware. This minimalist scheduling approach is
most useful in scenarios where the hardware has large caches,
built-in support for scheduling, or disk configurations that
cannot be optimized for at the operating system level. Virtual
machine instances that contain a limited number of client
applications can also benefit from using the noop scheduler,
essentially offloading scheduling concerns to the hypervisor
or host operating system. However, VMs that must maintain
fairness among their own processes will likely require a
more advanced scheduler [22]. Solid state disks may exhibit
improved performance when paired with the noop scheduler,
but workloads that involve disk contention are generally best
served by the deadline or CFQ schedulers.

The deadline scheduler is primarily focused on latency,
and prevents I/O starvation by enforcing a deadline for
request start times. Since applications are more likely to
block while performing read operations (the data being read
is often required to continue processing), reads are prioritized
over writes. Operations are sorted and processed in batches
based on their associated logical block addresses (LBAs),
and separate deadline queues are inspected after each batch
has completed processing to ensure no requests have been
starved. The deadline scheduler is useful in situations that
involve multi-threaded workloads [23] or small, random
reads combined with sequential buffered writes (frequently
observed in databases) [24].

Anticipatory Scheduling (AS) [12] focuses on dealing with
deceptive idleness, a phenomena that occurs when processes
appear to be finished reading from the disk but are actually
processing data to prepare for the next read operation. If
deceptive idleness is not accounted for, unnecessary seek
operations become more likely as other processes’ incoming
requests differ greatly in physical location on disk. In these
situations, AS allows the disk to stay in an idle state for short

periods of time after servicing a read request in anticipation
of further requests — an optimization that resulted in a 29-
71% throughput improvement in disk-intensive Apache HTTP
server workloads [12]. While AS may increase the amount of
time a disk spends idling, exploiting spatial locality in the I/O
requests results in net performance gains. As one might expect,
anticipatory scheduling requires some tuning to account for
differences in disk characteristics; an idle time that works well
with mechanical disks may result in an unfair distribution of
resources on solid state disks [25].

The current default Linux disk scheduler, Completely Fair
Queuing (CFQ), builds on the concept of stochastic fairness
queueing proposed by McKenney [26]. Fairness queuing is
implemented by mapping each process, network source, or
other type of traffic flow to queues that are served on a
round-robin basis. This ensures that each traffic flow will
receive an equal share of the resource, but also takes some
processing time to map flows to queues. Stochastic fairness
queuing reduces these computational requirements by creating
a fixed number of queues and then assigning the flows by pass-
ing source-destination address pairs through a hash function.
Unfortunately, this approach suffers from potential collisions,
especially when the number of disk requests are much larger
than the number of queues available.

CFQ avoids collisions by creating a queue for each thread
group in the system and then distributes I/O resources evenly
across the queues. It also implements a short pause after ser-
vicing each queue to deal with deceptive idleness, and allows
the pause to be tuned (or disabled completely) by system
administrators to address the differences in mechanical and
solid state disks. Somewhat similar to the deadline scheduler,
CFQ offers a low-latency mode that allows a target latency to
be specified when servicing requests that favors latency over
throughput. By placing I/O requests into individual queues,
CFQ makes fine-grained prioritization of different processes
and thread groups possible. We leverage this functionality in
our framework to penalize processes that use a disproportion-
ate amount of I/O resources and improve the overall long-term
throughput of virtual machines running on a given system.
I/O prioritization is exposed through the Linux kernel control
group (cgroup) interface.

A. Control Groups and I/O Classes

In the Linux kernel, Control Groups (often abbreviated as
cgroups) are a unified interface for managing system resources.
Each type of resource is managed through corresponding
subsystems, which include CPU, memory, network, and block
I/O resource controllers. Control groups allow hierarchical
rules to be applied to certain classes of processes or users,
as well as OS-level virtualization which provides complete
namespace isolation for groups of processes. OS-level vir-
tualization functionality in Linux has been used in projects
such as Linux Containers (LXC) [27], [28] and Docker [29].
Our framework uses the block I/O subsystem to manage I/O
priorities. There are three system I/O classes:



• Idle: processes running at this priority will receive disk
access only when no other processes are using the disk.

• Best-effort: the default class, which can be tuned with a
sub-priority ranging from 0-7. The default sub-priority is
calculated as sp = (nice + 20)/5, where nice refers to
the CPU scheduling priority of the process.

• Realtime: processes are given first priority access to the
disk. May result in starvation of other processes.

Along with these priorities, the block I/O subsystem also
allows weights from 10 to 1000 to be assigned to control
groups. These weights enable finer-grained control over I/O
priorities than the sub-priorities supported by the best-effort
scheduling class. Control groups can be used to manage virtual
machines, containers, and even standard processes all through
the same interface.

IV. FENNEL: ARCHITECTURE AND DESIGN

Fennel operates as a user space application, monitoring
disk use and environmental conditions to build scheduling
directives that are passed to the kernel layer through the cgroup
interface. Any system scheduler that implements the weighted
block I/O resource controller interface can be used in conjunc-
tion with Fennel. In this work, we use CFQ as the underlying
scheduling mechanism because (1) it implements the necessary
weighted I/O interfaces, (2) the algorithm excels at enforcing
short-term fairness across equal scheduling weights, and (3)
tunable parameters allow us to cope with the particularities of
both mechanical and solid state drives. Fennel executes as a
system daemon and is responsible for:

1) Collecting data about I/O activities for each disk and
maintaining a history of requests on a per-process basis

2) Monitoring disk health and utilization
3) Adjusting scheduling priorities with respect to historical

trends and usage patterns
These concerns are divided into three components: the process
monitor, hardware monitor, and scheduling directive generator.

procfs cgroups

Ke
rn

el

Process
Monitor

Hardware
Monitor

Fe
nn

el Scheduling
Directive

Generator

Fig. 2. Interactions between core Fennel components and the kernel. In this
illustration, arrows represent the flow of information to and from components:
the procfs facility is queried to retrieve process and disk hardware information,
and then new priorities are published to the scheduler through the cgroups
interface.

The interactions between components are shown in Figure 2;
the activity and hardware monitors collect statistics about
disks and processes in parallel, and then the scheduling di-
rective generator acts on the information to update scheduling
weights. We designed Fennel as a user space application to
ensure portability: communication between the daemon and
kernel are abstracted away by a set of interfaces for data
gathering and priority modification that can be re-implemented
for other operating systems.

A. Process Monitor

To record information about processes that are performing
disk operations, Fennel inspects kernel data structures exposed
through the procfs interface. A configurable interval (one
second by default) determines how often the data structures
will be read, and any processes that have performed disk
reads or writes will be added to an active task list for
further analysis. This step also updates historical data about
each process running on the system, and removes records for
processes that have terminated. When a VM has previously
issued I/O requests but has not during the current reporting
period, an idle state notification is added to its task history
data so that the scheduling directive generator knows that
the process has been idle. In most configurations, idling will
help increase the weight of the VM in question. Collecting
this activity information requires iterating through the current
set of running processes; on our test cluster, servers that
were managing 300-500 processes generated this list in about
81.2 ms on average (100 iterations per server across 78 servers,
with a standard deviation of 7.6 ms).

Each task data structure managed by the process monitor
includes a variety of information: a time stamp, the number
of bytes read and written during the reporting period, and the
amount of time spent waiting in the queue for requests to be
serviced. User, process, and thread group IDs are also included
to aid analysis by the scheduling directive generator or system
administrators. Summary statistics are also maintained, includ-
ing minimum, maximum, average, and standard deviations for
both read and write operations. Once process information has
been collected, it is passed to the directive generator. During
the collection process, the hardware monitor is also gathering
information from disks attached to the system.

B. Hardware Monitor

Fennel maintains records about each disk at a physical
machine to guide its scheduling decisions. This information is
crucial in determining the amount of concurrent I/O requests
a disk can handle, its average speed and latency between
seek operations, and how much a particular access pattern
may impact other processes. Table I outlines some of the
information gathered by the disk hardware monitor on the
drives in our test deployment, which have a range of speed
and seek capabilities: large, relatively slow consumer grade
storage disks (A, B), small, high-RPM mechanical disks with
low platter density but high seek performance (C), and solid



TABLE I
READ, WRITE, AND SEEK PERFORMANCE OF EACH OF THE DISKS IN OUR TEST ENVIRONMENT, AVERAGED OVER 100 ITERATIONS.

Disk Model Manufacturer Speed Capacity Read (MB/s) Write (MB/s) Random Seek/s

A ST3000DM001 Seagate 7200 RPM 3 TB 244.2 190.1 295.3

B MB1000GCEEK HP 7200 RPM 1 TB 139.6 109.3 341.0

C DF0300B8053 HP 15000 RPM 300 GB 178.9 141.7 544.2

D MZ-7TE1T0BW Samsung SSD (SATA 3) 1 TB 438.5 386.8 21276.0

state drives (D) that are much faster and not constrained by
physical movements for seeking.

Seek capabilities are particularly important to our algorithm
because a process that performs an excessive amount of ran-
dom seeks on a mechanical disk will result in high utilization
but low throughput due to disk head movements. CFQ includes
a provision for penalizing backward seeks by prioritizing I/O
requests that fall in front of the disk head, which reduces the
amount of times the head will have to change direction while
servicing requests. However, this approach does not penalize
processes that seek frequently. For this reason, we impose
a rotational seek penalty on mechanical disks to discourage
access patterns that require a substantial amount of random
seeks.

During startup, Fennel determines whether or not each drive
is mechanical by inspecting kernel data structures. To handle
hot swapping, it also subscribes for callback notifications when
new disks are inserted or removed. For mechanical disks,
Fennel monitors cumulative read and write throughput as
well as disk usage, u, which describes the amount of each
scheduling quantum the disk controller is busy. The number
of processes using the disk, n, is also maintained. When at
least one process is using the disk, these variables are used to
compute the throughput score (ts):

u =
tbusy

tquantum
ts =

IOread + IOwrite

u× n

If the throughput score for a disk crosses a configurable thresh-
old, the framework will begin inspecting relevant processes
to find the culprit(s). The default threshold is set to 20%
of the average bandwidth observed on a per-disk basis. For
example, if the disk in question can sustain 100 MB/s average
transfer speeds under normal operation but Fennel observes an
aggregate throughput of 20 MB/s with 100% utilization, the
disk will be flagged for further inspection. Note that simply
crossing the threshold does not result in priority changes until
a definite cause for the abnormal performance is found. This
means that a somewhat higher threshold is preferred since false
positives at this stage do not result in miss-classification of
processes.

Once hardware information has been collected and drives
that are experiencing potentially seek-heavy workloads have

been flagged, the data structures are passed to the scheduling
directive generator to aid in the decision making process.
The hardware monitor can also be configured to alert system
administrators of possible disk issues that arise over time;
for instance, the CRC error rate on a particular disk may
be considered normal by the drive manufacturer’s SMART
parameters, but the Fennel hardware monitor will observe de-
creased average performance and issue a warning. Thresholds
for disk temperatures, queue lengths, and average performance
can all be configured to help pinpoint hardware issues in a
cluster.

C. Accounting for Storage Configurations

The type of disks available on a given machine is another
important piece of information provided by the Fennel hard-
ware monitor. This includes whether the disk is rotational or
solid state, the disk’s operational RPMs (HDDs only), sector
sizes, as well as alignment and manufacturer information.
Solid state drives in particular require special care when
using the CFQ scheduler, as its default time slices may be
too long to achieve optimal performance. If a solid state
drive or enterprise-class RAID is detected by the hardware
monitor, Fennel will optionally reconfigure the following CFQ
parameters at run time using the procfs interface:

• slice_idle = 0
• quantum = 64
• group_idle = 1

Each of these options helps boost the performance of faster
hardware configurations. The slice_idle parameter con-
trols how long CFQ will wait for requests in order to handle
deceptive idleness. Since deceptive idleness is not as critical of
an issue on flash media or RAIDs with sophisticated caches,
this delay is disabled. By setting quantum to 64 from its
default value of 8, CFQ will issue more commands to the disk
controller in parallel. Finally, the group_idle parameter
allows CFQ to idle for a short period of time after servicing
each logical grouping of threads or processes. This corrects
for any losses due to spatial locality that may have been
caused by disabling the slice_idle parameter. Since most
clusters often have a wide range of heterogeneous hardware,
automatically configuring these parameters will help ensure
high performance with the CFQ scheduler.



D. Scheduling Directive Generator

Once the process and hardware monitors are finished col-
lecting data, the scheduling directive generator begins its
prioritization algorithm. The first step involves analyzing the
amount of bytes read and written by each process and then
consulting a set of configurable rules to determine new process
weights. Both time and throughput can be used to influence the
weights, but Fennel defaults to using disk throughput because
it reflects the actual consumption of resources associated with
the process. As a process uses more of a resource, its weight is
throttled down in configurable increments. We support a linear
weight penalty as well as a logarithmic penalty, influenced by
the cumulative data accessed by the process CT , a configurable
scale factor S (in MB), and N , the number of weight classes
desired (10 by default):

w = max(N − CT

S
, 1)

w = max(N − lg(
CT

S
), 1)

Figure 3 illustrates the difference between these two penalty
functions. An optional weight of 0 can be enabled to specify
the idle kernel scheduling class, but this feature is disabled by
default to avoid I/O starvation in deployments with several
VMs. For the sake of portability, Fennel allows users to
configure up to 100 I/O classes, which are mapped to the Linux
block I/O priority weights (10 – 1000). Custom penalty curves
are also supported for deployments with exceptional use cases.
These parameters are used to calculate the final priorities for
each process, and the updates are made using the control group
interface to the block I/O resource controller. Updates are
lightweight, generally completing in less than 1 ms.

When a process has temporarily stopped using storage re-
sources without terminating, the scheduling directive generator
will remove a configurable amount of cumulative I/O for
each idle state notification received from the process monitor.
This allows processes to regain scheduling weight over time.
By default, the idle state weight increase is set to S/2 to
prevent toggling between weight classes for processes that
frequently perform short, intermittent bursts of I/O. As with
the other parameters used in Fennel, the weight increase ratio
is configurable to be more or less aggressive depending on the
workload.

0 5000 10000
Cumulative Data (MB)

1

2

3

4

5

6

7

8

9

10

P
rio

rit
y

Linear, S=1024

0 5000 10000
Cumulative Data (MB)

1

2

3

4

5

6

7

8

9

10
Logarithmic, S=1

Fig. 3. Configurable weight penalty functions supported by the scheduling
directive generator.

After the appropriate weights have been calculated and
applied for each process, Fennel inspects the disks that were
flagged by the hardware monitor as potential sources of
excessive seeks. The daemon determines which processes are
accessing the flagged disks using data gathered by the process
monitor, and then sorts the processes by cumulative I/O for the
current inspection interval; in general, processes that exhibit
low cumulative throughput are more likely to be seeking.
Fennel then attaches to the processes with the Linux strace
utility, which allows interactive inspection of all system calls
being executed by the process. If a substantial portion of
system calls that occur during a one-second sample belong
to the seek() family of functions and are operating on
offsets that do not follow a predominantly sequential pattern,
then the process in question is selected for re-prioritization.
Note that this secondary step occurs after the first weight
adjustment phase to ensure that weight updates are pushed
out in a timely manner and not delayed by the excessive seek
detection process.

E. Supported Virtualization Types

While Fennel can be used to manage interference among
processes in a cluster, it is also able to alleviate contention
for virtual machine workloads. Both Type 1 and Type 2
hypervisors are supported, including KVM virtualization, Xen,
and VirtualBox VMs. OS-level virtualization provided through
containers can also be managed by Fennel. We designed our
framework to be process neutral so it would apply to a broad
range of use cases, including situations where there is a
mixture of local processes, virtual machines, and containers.
In mixed environments Fennel allows certain processes to
be selectively blacklisted, which prevents them from being
considered by the prioritization algorithm; kernel threads and
processes owned by the root user are blacklisted in the
default configuration.

F. Commercial and Public Cloud Environments

One of the intended use cases for the Fennel framework
is discouraging “noisy neighbors” that consume a dispropor-
tionate amount of I/O resources at a single VM, which leads
to decreased performance for neighboring VMs on the same
host. In fact, Fennel supports usage tiers that allow cloud
providers to assign priority limits to particular classes of users.
If a particular VM is consistently using a large amount of I/O
resources, Fennel can also be configured to reassign it to the
idle scheduling weight to ensure its disk activities will not
affect other users. Ideally, users that are aware of our weighted
scheduling scheme would be judicious with I/O operations.

In shared environments, a malicious user could conceivably
work around a low scheduling priority by launching a large
number of I/O threads. To counteract this behavior, Fennel
categorizes thread groups originating from the same user under
a single scheduling directive. Virtual machines belonging to
the same account are also grouped together to prevent this
type of abuse.



0 10 20 30 40 50 60
Time (s)

0

50

100

150

200

R
ea

d 
S

pe
ed

 (M
B

/s
)

VM 1 VM 2 VM 3 VM 4

Baseline Workload Evaluation

Fig. 4. Read speeds observed across each VM workload on a host without
the Fennel daemon. CFQ ensures short-term fairness among the different
workloads, which results in longer turnaround times for VM 3 and 4.

V. PERFORMANCE EVALUATION

To evaluate the performance of Fennel, we devised a set
of benchmarks for both single-host and distributed settings.
These benchmarks include a variety of workloads to help
investigate how different usage patterns affect scheduling
weights. Our test deployment of 1,200 VMs was populated
with a HDFS/Hadoop cluster as well as a Galileo [30], [31]
cluster. Galileo is a high-throughput spatiotemporal storage
framework that differs from HDFS by using location-aware
hashing to distribute incoming data from radars, satellites, and
other types of sensors.

A. Disk Contention

Our first benchmark addresses the performance of Fennel
on a single host machine operating four VMs per disk. In this
case, we used the following workloads:

1) Hadoop WordCount job processing 10 GB of data from
the Common Crawl dataset

2) Hadoop Grep job parsing 3 GB of log files
3) Reading a 500 MB machine learning dataset
4) Converting a 250 MB NetCDF [32] file to the Galileo

native storage format
Note that these workloads fall into two categories: short, disk-
bound processes (3, 4), and long-running tasks with interleaved
processing and I/O (1, 2). Each task was launched sequentially
from its own virtual machine with a five-second lag between
each launch. The first 60 seconds of this baseline evaluation
are shown in Figure 4; CFQ ensures that each process will re-
ceive an equal share of the disk, resulting in evenly distributed
read speeds throughout the entire benchmark.

In the next benchmark iteration, we activated the Fennel
daemon on the machine hosting our four VM configurations.
The daemon was configured to use 10 weight classes ranging

0 10 20 30 40 50 60
Time (s)

0

50

100

150

200

R
ea

d 
S

pe
ed

 (M
B

/s
)

VM 1 VM 2 VM 3 VM 4

Weighted I/O Prioritization with Fennel

Fig. 5. Read speeds observed across each VM workload with Fennel. Note
the visible reduction in completion times for VM 3 and 4, as well as increased
bandwidth availability for VM 3.

from the highest to lowest possible priorities and a scale factor
of 128 MB. This results in weight changes after each 128 MB
increment of cumulative I/O, or, in other words, a process
will reach the lowest priority after reading 1,280 MB of data.
Figure 5 illustrates the VM performance when operating under
the Fennel daemon: while VM 1 is initially de-prioritized
heavily due to its higher consumption of I/O resources, it
eventually reaches parity with VM 2, a process that is also
reading a significant amount of data from the disk.

With Fennel active, VM 3 and 4 receive higher I/O priori-
ties, which translates to faster completion times for their small
workloads. It is also worth noting that when VM 1 is the sole
remaining task executing on the system, its I/O throughput
matches earlier values, indicating that being scheduled at the
lowest priority does not incur a throughput penalty when no
other processes are accessing the disk. Table II compares
completion times between test iterations. VM 3 and 4 clearly
benefit from our weighted I/O scheme, finishing 46.4% and
42.7% faster than the baseline test, respectively. Another
side effect of Fennel’s influence is slight improvements in
completion times for the long-running VM instances due to
reduced overall contention for resources.

TABLE II
COMPARISON OF COMPLETION TIMES FOR EACH VM INSTANCE.

VM Baseline (s) Fennel (s) Change (%)

1 83.0 81.9 -1.3

2 44.6 40.1 -10.1

3 12.4 7.1 -42.7

4 6.9 3.7 -46.4



VM 1 VM 2 VM 3 VM 4
0

20

40

60

80

100

120

140

A
ve

ra
ge

 R
ea

d 
Th

ro
ug

hp
ut

 (M
B

/s
)

Baseline (CFQ Only)
Fennel

Average Throughput Per VM

Fig. 6. Throughput observed at each VM in the disk contention test.

In Figure 6, the mean I/O throughput is broken down for
each VM in both iterations of the benchmark. As expected,
the largest gain in observed throughput is at VM 3 and 4.
Additionally, the aggregate throughput for the baseline and
Fennel version of the benchmark was 166.0 MB/s and 166.2
MB/s, respectively, demonstrating that Fennel’s weighting
decisions have not reduced overall throughput.

B. Large-Scale MapReduce Evaluation

While the previous benchmark demonstrated Fennel’s ef-
fectiveness at a single node, we also executed a large-scale
MapReduce application over the entire 1,200 VM cluster.
In this test, a Hadoop Grep job was launched to locate
tokens in server log files stored at each VM, with each log
containing approximately 1 GB of ASCII data on average.
To exercise the Fennel daemons, we also began streaming
weather feature data from the western United States (sourced
from our NOAA dataset [10]) into Galileo for storage. Since
Galileo partitions data spatially, the sample readings from the
western US coast selectively impacted storage nodes while
leaving others idle.

Figure 7 compares the performance of the MapReduce Grep
job running with and without the Fennel daemon activated.
Each data point in the figure represents a task completion
time, with the longest task determining the overall speed of
the job. Note that approximately 200 VMs (900 – 1100) were
impacted by the Galileo storage operation, causing interfer-
ence. In this benchmark, the baseline configuration completed
in 45.1 seconds (26.6 GB/s aggregate throughput), while the
Fennel configuration took 36.0 seconds to complete (33.3
GB/s aggregate throughput) for a 20% reduction in execution
time. Additionally, four speculative tasks were launched by
the Hadoop runtime during the baseline test, whereas no
speculative tasks were launched in the second iteration of the
test.

VI. CONCLUSIONS AND FUTURE WORK

This paper described our framework, Fennel, for accom-
plishing high-throughput, data-intensive computing in virtual-
ized settings. Fennel is broadly deployable (in physical and
virtual machine settings) because its constituent components
reside outside the VMs and do not require kernel or hypervisor
modifications. Effective prioritization of processes based on
the number and type of I/O operations being performed
ensures that fairness is achieved without compromising on
overall throughput; in fact, our approach ensures that the
average time spent by a process waiting to perform I/O is
reduced as a proportion of the overall execution times. Data
intensive computing often involves data-parallel processing –
as engendered in MapReduce and frameworks that leverage
it – where completion times are determined by the last task
to complete. Such tasks are often stragglers and MapReduce
runtimes launch speculative, backup tasks for such straggelers.
Through its fairness preservation criteria, Fennel alleviates
stragglers since tasks are less impacted by interference from
collocated noisy neighbors that starve other processes from
performing I/O. Our benchmarks were performed in large set-
tings involving thousands of VMs, multiple analytic processes,
and voluminous datasets. These experiments demonstrate the
effectiveness of ensuring fairness, high-throughput, and faster
completion times for data intensive tasks.

As part of our future work we plan to leverage time-series
analysis for scheduling I/O processing, dynamic apportioning
of virtual memory among collocated virtual machines, and
incorporating heat dissipation as a metric to be monitored
and reduced in such settings. Another avenue for future
research is support for capabilities often required by scientific
applications, such as kernel density estimation of attribute
values, without having to read all stored data.

ACKNOWLEDGMENTS

This research was supported by funding from the US
Department of Homeland Security’s Long Range pro-
gram (HSHQDC-13-C-B0018) and the US National Science
Foundation’s Computer Systems Research Program (CNS-
1253908).

REFERENCES

[1] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, bigger
digital shadows, and biggest growth in the far east,” IDC iView: IDC
Analyze the Future, vol. 2007, pp. 1–16, 2012.

[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Communications of the ACM, 2008.

[3] The Apache Software Foundation. Apache Hadoop. [Online]. Available:
http://hadoop.apache.org

[4] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.

[5] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-
reduce framework,” Proceedings of the VLDB Endowment, vol. 2, no. 2,
pp. 1626–1629, 2009.

[6] The Apache Software Foundation. Apache Pig. [Online]. Available:
https://pig.apache.org

[7] The Linux Foundation. 2014 Enterprise End User Report.
[Online]. Available: http://www.linuxfoundation.org/publications/linux-
foundation/linux-end-user-trends-report-2014



0 200 400 600 800 1000 1200
Virtual Machine

20

25

30

35

40

45

50

C
om

pl
et

io
n 

Ti
m

e 
(s

)

Baseline (CFQ Only)
Fennel

Large-Scale MapReduce Evaluation

Fig. 7. Hadoop task completion times for the entire 1,200-VM cluster while experiencing interference across a subset of the VMs. In this benchmark, the
baseline configuration completed in 45.1 seconds, whereas the test iteration with Fennel enabled completed in 36.0 seconds.

[8] J. Axboe, “Linux block IO – present and future,” in Ottawa Linux Symp.
Citeseer, 2004, pp. 51–61.

[9] The Common Crawl Foundation. (2015) Common Crawl Corpus.
[Online]. Available: http://commoncrawl.org/

[10] National Oceanic and Atmospheric Administration. (2015) The
north american mesoscale forecast system. [Online]. Available:
http://www.emc.ncep.noaa.gov/index.php?branch=NAM

[11] D. M. Jacobson and J. Wilkes, Disk scheduling algorithms based on
rotational position. Citeseer, 1991.

[12] S. Iyer and P. Druschel, “Anticipatory scheduling: A disk scheduling
framework to overcome deceptive idleness in synchronous I/O,”
SIGOPS Oper. Syst. Rev., vol. 35, no. 5, pp. 117–130, Oct. 2001.
[Online]. Available: http://doi.acm.org/10.1145/502059.502046

[13] Q. Zhang, D. Feng, F. Wang, and Y. Xie, “An efficient, qos-aware i/o
scheduler for solid state drive,” in High Performance Computing and
Communications 2013 IEEE International Conference on, Nov 2013,
pp. 1408–1415.

[14] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet, “Linux block
io: Introducing multi-queue ssd access on multi-core systems,” in
Proceedings of the 6th International Systems and Storage Conference,
ser. SYSTOR ’13. New York, NY, USA: ACM, 2013, pp. 22:1–22:10.
[Online]. Available: http://doi.acm.org/10.1145/2485732.2485740

[15] S. Park and K. Shen, “FIOS: A fair, efficient flash i/o
scheduler,” in Proceedings of the 10th USENIX Conference on
File and Storage Technologies, ser. FAST’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 13–13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2208461.2208474

[16] D.-J. Kang, C.-Y. Kim, K.-H. Kim, and S.-I. Jung, “Proportional disk
i/o bandwidth management for server virtualization environment,” in
Computer Science and Information Technology, 2008. ICCSIT ’08.
International Conference on, Aug 2008, pp. 647–653.

[17] Y. Wu, B. Jia, and Z. Qi, “Io qos: A new disk i/o scheduler module
with qos guarantee for cloud platform,” in Information Science and
Engineering (ISISE), 2012 International Symposium on, Dec 2012, pp.
441–444.

[18] J. Turner, “New directions in communications(or which way to the
information age?),” IEEE communications Magazine, vol. 24, no. 10,
pp. 8–15, 1986.

[19] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single-node
case,” IEEE/ACM Transactions on Networking (ToN), vol. 1, no. 3, pp.
344–357, 1993.

[20] S. R. Seelam and P. J. Teller, “Virtual i/o scheduler: A scheduler
of schedulers for performance virtualization,” in Proceedings of the
3rd International Conference on Virtual Execution Environments, ser.
VEE ’07. New York, NY, USA: ACM, 2007, pp. 105–115. [Online].
Available: http://doi.acm.org/10.1145/1254810.1254826

[21] D.-J. Kang, S.-I. Jung, R. Tsuruta, and H. Takahashi, “Range-bw: I/o
scheduler for predicable disk i/o bandwidth,” in Computer Engineering
and Applications (ICCEA), 2010 Second International Conference on,
vol. 1, March 2010, pp. 175–180.

[22] D. Boutcher and A. Chandra, “Does virtualization make disk scheduling
passe?” SIGOPS Oper. Syst. Rev., vol. 44, no. 1, pp. 20–24, Mar. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1740390.1740396

[23] IBM Corporation, “Best practices for KVM — best practices for block
I/O performance,” 2012.

[24] Red Hat, Inc. (2015) What is the recommended I/O scheduler for a
database workload in Red Hat Enterprise Linux? [Online]. Available:
https://access.redhat.com/solutions/54164

[25] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh, “Disk
schedulers for solid state drives,” in Proceedings of the Seventh ACM
International Conference on Embedded Software, ser. EMSOFT ’09.
New York, NY, USA: ACM, 2009, pp. 295–304. [Online]. Available:
http://doi.acm.org/10.1145/1629335.1629375

[26] P. McKenney, “Stochastic fairness queueing,” in INFOCOM ’90, Ninth
Annual Joint Conference of the IEEE Computer and Communication
Societies. The Multiple Facets of Integration. Proceedings, IEEE, Jun
1990, pp. 733–740 vol.2.

[27] R. Rosen, “Resource management: Linux kernel namespaces and
cgroups,” Haifux, May, 2013.

[28] ——, “Linux containers and the future cloud,” Linux
Journal, vol. 2014, no. 240, Apr. 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2618216.2618219

[29] D. Merkel, “Docker: Lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 2014, no. 239, Mar. 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2600239.2600241

[30] M. Malensek, S. Pallickara, and S. Pallickara, “Exploiting geospatial and
chronological characteristics in data streams to enable efficient storage
and retrievals,” Future Generation Computer Systems, 2012.

[31] ——, “Expressive query support for multidimensional data in distributed
hash tables,” in Utility and Cloud Computing (UCC), 2012 Fifth IEEE
International Conference on, nov. 2012.

[32] R. Rew and G. Davis, “Netcdf: an interface for scientific data access,”
Computer Graphics and Applications, IEEE, 1990.


