CS 220:
Introduction to
Parallel Computing

Welcome to CS 220!

= Glad to have you all in class!

= Lecture Information:
Time: MWF 3:30 - 4:35pm
Room: HR 148
Course website:

http://www.cs.usfca.edu/~mmalensek/cs220

1/22/18 CS 220: Parallel Computing

Staff

Instructor: Matthew Malensek
Office Hours: MF 10-11am, Th 1-2pm (HR 416)

Research: distributed systems, big data

TA: vy An
Office Hours: MW 1-2pm

1/22/18 CS 220: Parallel Computing

Enrollment Status

We currently have 25 students enrolled with 19 more
on the waitlist

If you're enrolled, great!
If not:

Come put your name on the sign-up sheet after class

Email me if you're a special case (need the course to
make progress, can't getinto any CS courses, etc...)

You may also want to let our chair, Prof. Wolber, know

1/22/18 CS 220: Parallel Computing

Quick Note: Prerequisites

= CS 110 with a B or better and instructor permission
-— Or -

= CS 112 with a C or better

1/22/18 CS 220: Parallel Computing

Today's Agenda

= Syllabus
= Why C?
= Modern CPU Performance

= Parallel Computing Background

1/22/18 CS 220: Parallel Computing

Today's Agenda

= Syllabus
= Why C?
= Modern CPU Performance

= Parallel Computing Background

1/22/18 CS 220: Parallel Computing

Staying up to Date

= Check the course website before class for:
= Syllabus
= Recent announcements
= Assignments

= Printable lecture notes
= Grades will be posted on Canvas

= Project submissions: GitHub

1/22/18 CS 220: Parallel Computing

Course Roadmap

1/22/18

. C programming

. Parallel computing with MPI

Programming with threads and parallelism
primitives

Wrapping up: GPU programming

= 2> A tentative schedule is available online

CS 220: Parallel Computing

Books

Required:
Brian Kernighan and Dennis Ritchie, The C
Programming Language, 2nd edition, Prentice-
Hall, 1988.

Optional.
Peter Pacheco, An Introduction to Parallel
Programming, Morgan-Kaufmann, 2011.

1/22/18 CS 220: Parallel Computing 10

Course Structure

1/22/18

Class sessions will introduce C and parallel
programming theory

We will work through programming examples
together as a class

Remember to ask questions!

You will start on homework assignments (labs) to
apply what we've learned

We'll also work on 4-5 larger projects

CS 220: Parallel Computing

11

Evaluation

= Besides homework and projects, you'll be evaluated
In two ways:

= Midterms

= Final exam
= We'll have ~2 midterms

= Cumulative final

1/22/18 CS 220: Parallel Computing

12

Grade Distribution

= Homework: 15%
= Projects: 50%

= Midterms: 20%
= Final: 15%

1/22/18 CS 220: Parallel Computing

13

Grading

100 -93 A
92 -90 A-
89 —87 B+
86 — 83 B
82 -80 B-
79-77 C+
76 —-173 C
72-70 C-
69 — 67 D+
66 — 63 D
62 — 60 D-
59-0 F

1/22/18 CS 220: Parallel Computing

Policies

Assignments are due at 11:59 pm on the due date

Late homework is not accepted

Late projects are penalized 10% per day, for a
maximum of three days (no credit thereafter)

1/22/18 CS 220: Parallel Computing

15

Today's Agenda

= Syllabus
= Why C?
= Modern CPU Performance

= Parallel Computing Background

1/22/18 CS 220: Parallel Computing

16

Oh Say Can you C?

1/22/18

The C programming language was invented around
1970

It's old.

Legend has it that Dennis Ritchie invented it while he
was riding around in his horse-drawn carriage

Jokes aside, C can be a tough language to learn
The good news? C is a very simple language!

The bad news? C is a very simple language!

CS 220: Parallel Computing 17

S0, why learn this old thing?

Nearly all operating systems are writtenin C

Linux: almost all C
macOS: most of the low-level functionality is C

Windows: C and C++

Two of the most popular mobile operating systems
are based on these...

Embedded systems: elevators, refrigerators, routers,
TVs are all often written in C

High-performance software is often written in C

1/22/18 CS 220: Parallel Computing

18

TIOBE Language Rankings

Jan 2018 Jan 2017 Change Programming Language Ratings
1 1 Java 14.215%
2 2 C 11.037%
3 3 C++ 5.603%
4 5 A Python 4.678%
5 4 v C# 3.754%

https://www.tiobe.com/tiobe-index/

1/22/18 CS 220: Parallel Computing

Change
-3.06%
+1.69%
-0.70%
+1.21%

-0.29%

19

C's Popularity isn't just Historical

C is very fast and efficient
It's a thin layer above the actual hardware

Languages like Python or Java operate on higher
levels of abstraction

C is always in the back of hardware designers' minds

C is easy to interoperate with

Slow Python code? Re-implement the function in C
and call it easily from your Python app

1/22/18 CS 220: Parallel Computing 20

Today's Agenda

= Syllabus
= Why C?
= Modern CPU Performance

= Parallel Computing Background

1/22/18 CS 220: Parallel Computing

21

Single-Threaded Performance

10,000

Intel Xeon, 3.6 GHz __64-bit Intel Xeon, 3.6 GHz
6505

Performance (vs.VAX-11/780)

........ 1.5, VAX-11/785

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Source: Stephen A. Edwards. History of Processor Performance.

1/22/18 CS 220: Parallel Computing

Another Look

Source:

1/22/18

10,000,000

1,000,000

Dual-Core Itanium 2 o /

ntel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

10,000

1,000

100

10

A

0

@ Clock Speed (MH2)
& Power (W)

@ Perf /Clock (ILP)

1970 1975

1980 1985 1990 1995 2000

2005

Herb Sutter. The Free Lunch Is Over. Dr. Dobb’s Journal.

CS 220: Parallel Computing

2010

A

Clock Speed

Power

23

The "Free Lunch” is over?

1/22/18

In the past, we could just wait and CPUs would get
faster and faster (in terms of clock speed)

Your CPU's clock speed: 3.2 GHz (for example)

Performance improvements have slowed over time
Too much power consumption, too much heat

So as we all know, “There ain't no such thing as a free
lunch”

TANSTAAFL
*Unless you work at a tech company (?)

CS 220: Parallel Computing

24

Today's Reality

These days, we get better performance through
horizontal scaling

Rather than making one really fast processor (vertical
scaling), we'll make a processor running at a
reasonable speed with multiple cores

And in some cases, we'll have multiple processors, or
even multiple machines

Clusters

1/22/18 CS 220: Parallel Computing 25

An Example: Google

1/22/18

Google doesn't buy the world's craziest, most
expensive supercomputers

They buy commodity hardware in huge quantities

A single Google search may query tens or even
hundreds of servers

MPI is one option for cluster computing that we'll be
learning in this class

CS 220: Parallel Computing 26

Another Example: AMD

1/22/18

AMD's recent Ryzen/EPYC CPUs push the multicore
concept further

Let's say we want to build a 128-core CPU

The chance of a manufacturing defect is fairly high

AMD's latest approach is taking four 32-core CPUs
and fusing them together

MCM: multi chip module

CS 220: Parallel Computing

27

Performance Challenges

In some cases, this slowdown is okay:
Most applications run “fast enough”

| don't have to buy a new laptop every year!

But some use cases still need more power:
Climate models, large-scale, more realistic simulations
Machine Learning (deep learning)
Bioinformatics

Games! VR requires massive computational
capabilities

1/22/18 CS 220: Parallel Computing 28

Solution: IPC

We can increase the IPC (instructions per clock
cycle) of the CPU

This is not easy!

Modern CPUs even use machine learning to help
optimize instruction throughput

We can keep decreasing the size of transistors

1/22/18 CS 220: Parallel Computing

29

Solution: Die Shrink

We can shrink the size of the transistors in our CPUs

With increases in density, we can have more CPU
cores

This lowers costs and allows us to pack even more
transistors in a small area

The latest from Intel is around 10 nm

5 nm is currently considered the limit for die shrinks

Physical limits; guantum tunneling

1/22/18 CS 220: Parallel Computing 30

Solution: Parallel Programming

1/22/18

The current approach is parallel programming, and in
some cases distributed programming

So really, my point is:

If you care about performance, you're going to have
to parallelize your workloads

So, what exactly is parallel programming?

CS 220: Parallel Computing

31

Today's Agenda

= Syllabus
= Why C?
= Modern CPU Performance

= Parallel Computing Background

1/22/18 CS 220: Parallel Computing

32

Parallel Programming [1/2]

1/22/18

Adding more cores is only helpful if we can make use
of them!

The bad news is parallelizing applications can be
difficult

The basic idea behind parallel computing is:
Divide and Conquer

If we can split a problem up into many smaller
problems, then each core (or each machine) can take
care of part of the work

CS 220: Parallel Computing

33

Parallel Programming [2/2]

Some problems are embarrassingly parallel

If | told everyone to raise their hands, no coordination
IS necessary

Another example: running simulations

Unfortunately, not all problems are as easy to
parallelize

Communication is required between CPUs and
machines

1/22/18 CS 220: Parallel Computing 34

Blurring an Image

= Let's bluranimage in
parallel: first, we split it up
across our CPUs

= Next, each CPU loops
through each pixel and
Inspects its neighbors to
blend them together

= The only problem? We
need to stitch the edges
together

1/22/18 CS 220: Parallel Computing

35

Other Issues

Some algorithms are extremely difficult (or even
impossible) to parallelize

Global Shared State

In some situations, you may select a less efficient
algorithm simply because it is parallelizable

1/22/18 CS 220: Parallel Computing

36

Types of Parallel Architectures

= Distributed memory systems (clusters)
= Shared memory systems

= Heterogeneous systems

= Specialization for a particular task

= Graphics Processing Units (GPUSs)

= Single instruction, multiple data (SIMD) systems

1/22/18 CS 220: Parallel Computing

37

Wrapping Up

= Welcome to class (again!)

= Ask questions, come to instructor/TA office hours,
we're here to make sure you succeed

= Next class:

= Parallel architectures
= Getting started with C

1/22/18 CS 220: Parallel Computing

38

