CS 220: Introduction to Parallel Computing

Dynamic Memory

Lecture 10

Today's Schedule

= Project 1 Info

= Dynamic Memory Allocation

2/13/18 CS 220: Parallel Computing

Today's Schedule

* Project 1 Info

= Dynamic Memory Allocation

2/13/18 CS 220: Parallel Computing

Project 1

P1 is now available on the course webpage

You will get to work with:
Files, strings, tokenization

structs, dynamic memory allocation

Pointers! ©
Due 2/23

...And: tentative midterm date: 2/28

2/13/18 CS 220: Parallel Computing

Code Style (1/3)

= Be aware of your code formatting!

= Be consistent:
if (something) {

}
Or:

iIf (something)

{

}

2/13/18 CS 220: Parallel Computing

Code Style (2/3)

Don't mix spaces and tabs

A tab character might be represented by 8 spaces on
your machine and 4 on mine

Choose one and go with it
The examples I've given use spaces

Use consistent spacing:
if (something) {

X=Y,

2/13/18 CS 220: Parallel Computing

Code Style (3/3)

|

I'm not hiring him, he uses spaces not tabs.

2/13/18 CS 220: Parallel Computing

Commenting

You don't have to comment everything. For instance:

int 1 = 6; /% Create 1 and set it to 6 %/
Example of a bad comment

Include comments above each non-obvious function you
create.

What it does, what its inputs/outputs are

Comment tricky/confusing parts of your code to make
them more understandable

Don't submit your project with big blocks of
unused/commented out code

2/13/18 CS 220: Parallel Computing 8

Today's Schedule

= Project 1 Info

= Dynamic Memory Allocation

2/13/18 CS 220: Parallel Computing

Memory Allocation

A running instance of a program is called a process

Processes are allocated system memory to store
Instructions, literals, and more

At run time, there are two places memory is
allocated:

Stack
Heap

2/13/18 CS 220: Parallel Computing

10

Memory Layout

2/13/18

Memory Allocation

Stack

l Growth

Static Data

Literals

Instructions

= Stack: generally

responsible for

Dynamic temporary data
= Scratch space

= Made up of stack
frames

= Heap: long-lived data

Static

CS 220: Parallel Computing 11

Stack

2/13/18

Thus far, we've allocated everything to the stack
int a = 5;

A good fit if we already know what data we're working
with ahead of time

If we know a user wants to enter a number, we set
aside some memory for them to do it

If we don't know what data will be coming in ahead of
time, then we need to place it on the heap

CS 220: Parallel Computing 12

Stack Frame

Each function call has a stack frame

You may also see these called activation records

The stack frame contains the local variables, return
address, and parameters
In other words, the "execution environment” for each
function call

Stack frames get pushed onto the stack with each
function call

Unchecked recursive functions can lead to stack overflow

2/13/18 CS 220: Parallel Computing 13

2/13/18

Stack Frame N - 1

Local Variables

Parameters

Return Address

Stack Frame N

Local Variables

Parameters

Return Address

int main(int argc, char *xargv[]) {
hello(1);
return 0;

Stack Growth

_5\4525 bello(int 1) {

=1 + 1;
_ printf("Hello world!\n");
return j;

CS 220: Parallel Computing

14

Stack Overflow

We can cause a stack overflow by making the stack
grow too large. Consider a recursive function:

int foo()
{

return foo();

2/13/18 CS 220: Parallel Computing

15

Heap

2/13/18

The heap is where we dynamically allocate memory

This is achieved using the malloc() function

Allocating memory dynamically lets us cope with
changing inputs

Perhaps a user wants to load a file: we can't just
allocate a huge variable ahead of time and hope it fits

How would we store a file in memory anyway?
There's not exactly a “file” primitive type...

CS 220: Parallel Computing 16

Allocating Memory: malloc

= #include <stdlib.h>

=vold * malloc(size_t size);

= Remember the size_t type from our sizeof operator?

= This sets aside a block of memory for us to use

= We just need to give it the size

= Reminder: there is no guarantee the memory set
aside is zeroed out

2/13/18 CS 220: Parallel Computing

17

Freeing Memory: freel)

= #include <stdlib.h>

=vold free(vold * ptr _p);

= Every malloc() must also have a freel)

= Without freeing the memory, you introduce
memory leaks

= Imagine doing this inside an infinite loop

2/13/18 CS 220: Parallel Computing

18

Use after free()

/* What happens here? %/

int *xi = malloc(sizeof(int));
printf ("%d\n", *1);

free(1);

printf ("%d\n", *1);

2/13/18 CS 220: Parallel Computing

19

Dynamic Memory Functions

= calloc() — clears the memory and allocates it

= vold * calloc(size_t num, size t size);

= realloc() — reallocates (resizes) dynamically-allocated
memory

= vold * realloc(void *ptr, size_ t new_size);

2/13/18 CS 220: Parallel Computing

20

Demo

= Dynamically allocating structs
= Use after free

= calloc() vs mallocl)

2/13/18 CS 220: Parallel Computing

21

