
Lecture 10

CS 220: Introduction to Parallel Computing

Dynamic Memory



§ Project 1 Info
§ Dynamic Memory Allocation

Today’s Schedule

2/13/18 CS 220: Parallel Computing 2



§ Project 1 Info
§ Dynamic Memory Allocation

Today’s Schedule

2/13/18 CS 220: Parallel Computing 3



§ P1 is now available on the course webpage
§ You will get to work with:

§ Files, strings, tokenization
§ structs, dynamic memory allocation
§ Pointers! J

§ Due 2/23
§ …And: tentative midterm date: 2/28

Project 1

2/13/18 CS 220: Parallel Computing 4



§ Be aware of your code formatting!
§ Be consistent:

if (something) {
…

}
Or:

if (something)
{

…
}

Code Style (1/3)

2/13/18 CS 220: Parallel Computing 5



§ Don’t mix spaces and tabs
§ A tab character might be represented by 8 spaces on 

your machine and 4 on mine
§ Choose one and go with it

§ The examples I’ve given use spaces

§ Use consistent spacing:
if (something) {
x = y;

z = q;
}

Code Style (2/3)

2/13/18 CS 220: Parallel Computing 6



Code Style (3/3)

2/13/18 CS 220: Parallel Computing 7



§ You don’t have to comment everything. For instance:
§ int i = 6; /* Create i and set it to 6 */
§ Example of a bad comment

§ Include comments above each non-obvious function you 
create.
§ What it does, what its inputs/outputs are

§ Comment tricky/confusing parts of your code to make 
them more understandable

§ Don’t submit your project with big blocks of 
unused/commented out code

Commenting

2/13/18 CS 220: Parallel Computing 8



§ Project 1 Info
§ Dynamic Memory Allocation

Today’s Schedule

2/13/18 CS 220: Parallel Computing 9



§ A running instance of a program is called a process
§ Processes are allocated system memory to store 

instructions, literals, and more

§ At run time, there are two places memory is 
allocated:
§ Stack
§ Heap

Memory Allocation

2/13/18 CS 220: Parallel Computing 10



§ Stack: generally 
responsible for 
temporary data
§ Scratch space
§ Made up of stack 

frames

§ Heap: long-lived data

Memory Layout

2/13/18 CS 220: Parallel Computing 11



§ Thus far, we’ve allocated everything to the stack
§ int a = 5;

§ A good fit if we already know what data we’re working 
with ahead of time
§ If we know a user wants to enter a number, we set 

aside some memory for them to do it

§ If we don’t know what data will be coming in ahead of 
time, then we need to place it on the heap

Stack

2/13/18 CS 220: Parallel Computing 12



§ Each function call has a stack frame
§ You may also see these called activation records

§ The stack frame contains the local variables, return 
address, and parameters
§ In other words, the “execution environment” for each 

function call

§ Stack frames get pushed onto the stack with each 
function call
§ Unchecked recursive functions can lead to stack overflow

Stack Frame

2/13/18 CS 220: Parallel Computing 13



2/13/18 CS 220: Parallel Computing 14

int main(int argc, char *argv[]) {
hello(1); 
return 0;

}

int hello(int i) {
int j = i + 1;
printf("Hello world!\n");
return j;

} 



We can cause a stack overflow by making the stack 
grow too large. Consider a recursive function:

int foo()
{

return foo();
}

Stack Overflow

2/13/18 CS 220: Parallel Computing 15



§ The heap is where we dynamically allocate memory

§ This is achieved using the malloc() function

§ Allocating memory dynamically lets us cope with 
changing inputs
§ Perhaps a user wants to load a file: we can’t just 

allocate a huge variable ahead of time and hope it fits

§ How would we store a file in memory anyway? 
There’s not exactly a “file” primitive type…

Heap

2/13/18 CS 220: Parallel Computing 16



§ #include <stdlib.h>
§ void * malloc(size_t size);

§ Remember the size_t type from our sizeof operator?
§ This sets aside a block of memory for us to use

§ We just need to give it the size

§ Reminder: there is no guarantee the memory set 
aside is zeroed out

Allocating Memory: malloc

2/13/18 CS 220: Parallel Computing 17



§ #include <stdlib.h>

§ void free(void * ptr_p);

§ Every malloc() must also have a free()
§ Without freeing the memory, you introduce 

memory leaks
§ Imagine doing this inside an infinite loop

Freeing Memory: free()

2/13/18 CS 220: Parallel Computing 18



/* What happens here? */
int *i = malloc(sizeof(int));
*i = 3; 
printf("%d\n", *i); 
free(i);
printf("%d\n", *i); 

Use after free()

2/13/18 CS 220: Parallel Computing 19



§ calloc() – clears the memory and allocates it
§ void * calloc(size_t num, size_t size);

§ realloc() – reallocates (resizes) dynamically-allocated 
memory
§ void * realloc(void *ptr, size_t new_size);

Dynamic Memory Functions

2/13/18 CS 220: Parallel Computing 20



§ Dynamically allocating structs
§ Use after free
§ calloc() vs malloc()

Demo

2/13/18 CS 220: Parallel Computing 21


