
Lecture 12

CS 220: Introduction to Parallel Computing

Linked Lists

§ More Pointers
§ Linked Lists

Today’s Agenda

2/16/18 CS 220: Parallel Computing 2

§ More Pointers
§ Linked Lists

Today’s Agenda

2/16/18 CS 220: Parallel Computing 3

§ From a fundamental standpoint, there are two
reasons why we need pointers in C

§ What are they?
1. C only supports passing by value

§ We cannot modify variables that are passed into a
function unless they are pointers

2. Dynamic memory
§ We need to have a way to refer to data on the heap

Why Pointers?

2/16/18 CS 220: Parallel Computing 4

§ To get a sense of how pointers actually work, it is
useful to think about how memory is organized
§ After all, pointers refer to memory addresses

§ Let’s look at:
§ The memory address
§ The variable’s name
§ The variable’s value

Understanding Pointers

2/16/18 CS 220: Parallel Computing 5

§ int a = 12;

§ int b = 15;

§ int *c = &b;

§ int **d = &c;

§ *c = ?

§ *d = ?

§ **d = ?

Address Variable
Name

Value

1000 a 12
1001 b 15
1002 c 1001
1003 d 1002

In Memory

2/16/18 CS 220: Parallel Computing 6

§ Why do we need double pointers?
§ Arrays of arrays:

§ char **argv;

§ We can change the value of a variable from inside
another function with a single pointer

§ We can change the what a pointer points at from
inside another function with a double pointer

Double Pointers

2/16/18 CS 220: Parallel Computing 7

§ More Pointers
§ Linked Lists

Today’s Agenda

2/16/18 CS 220: Parallel Computing 8

§ We all know and love linked lists, or at least there’s a
good chance you’ve implemented one in the past!

§ Linked lists work well in C because we can
incrementally allocate memory for the list items

§ Deleting, inserting, etc are all fairly manageable
operations that only impact one list node (and its
neighbors)

Linked Lists

2/16/18 CS 220: Parallel Computing 9

§ We’ll start with a pointer to the head of the list

§ Then we have our list elements…
§ How should we represent a list element?

§ Using a struct, we can hold data and a pointer to the
next struct in the chain
§ (singly-linked list)

Implementing a Linked List

2/16/18 CS 220: Parallel Computing 10

struct list_node {

int data;
struct list_node * next;

};

Node Struct

2/16/18 CS 220: Parallel Computing 11

Linked Lists

2/16/18 CS 220: Parallel Computing 12

§ Here’s a linked list with four elements:

§ We maintain a pointer to the first element (head)

§ Each element maintains a pointer to the next element

§ The last element points to NULL

1. Allocate memory for the new node
2. Update the new node’s data/value
3. Set its next pointer to the current head
4. Update the head pointer

§ Should now point to the newly-inserted node
§ Tricky: how do we do this? Can it be done with a single

pointer?

Insert

2/16/18 CS 220: Parallel Computing 13

1. Loop through the array until we find a node whose
next pointer points at NULL
§ (End of the list)

2. Allocate memory for the new node
3. Update the new node’s data/value
4. Set the next pointer to NULL (new end of list)
5. Set the old last node’s next pointer to the new node

Append

2/16/18 CS 220: Parallel Computing 14

1. Use a temporary variable to store the current node
2. Start with current = head
3. While the current node isn’t null:

§ Print its value
§ Move to the next node

Print (1/2)

2/16/18 CS 220: Parallel Computing 15

void print(struct list_node* head_p) {
struct list_node *curr = head_p;
while (curr != NULL) {

printf("%d -> ", curr->data);
curr = curr->next;

}

printf("\n");
}

Print (2/2)

2/16/18 CS 220: Parallel Computing 16

Delete

2/16/18 CS 220: Parallel Computing 17

1. Find the node in question
2. Update the previous node’s next pointer
3. Print out the values to help orient yourself
4. Remember: in C, we have to take care of freeing

memory ourselves!

Delete (2/2)

2/16/18 CS 220: Parallel Computing 18

