CS 220: Introduction to Parallel Computing

Message Passing Interface (MPI)

Lecture 13

Today's Schedule

= Parallel Computing Background
= Diving in: MPI

= The Jetson cluster

3/7/18 CS 220: Parallel Computing

Today's Schedule

= Parallel Computing Background
= Diving in: MPI

= The Jetson cluster

3/7/18 CS 220: Parallel Computing

Parallel Computing (1/2)

3/7/18

Now that we're all C masters, we can move on to the
good stuff: parallelism

Specifically, we'll be looking at distributed memory
systems for the next section of the course
In these systems, we have a few different elements:

Physical machines
Processors

Processor cores

CS 220: Parallel Computing

Parallel Computing (2/2)

3/7/18

Parallel computing can be summed up with a simple
motto:

“Divide and conquer”

Let's take a problem, break it into smaller pieces, and
then have multiple cores/processors/machines work

on it all at once

Challenge: getting all these processors to work
together

CS 220: Parallel Computing

Approaches

3/7/18

We can use several different strategies to parallelize
applications

The first approach we'll examine in this class is MPI

Message Passing Interface

MPI has a lot of functionality, but at its core is based
on a very simple idea:

Running multiple copies of your program

(Sometimes even across multiple computers)

CS 220: Parallel Computing

Architectures

8/25/17

Before we dive in, we need to take a look at the
hardware architectures behind parallel systems

There are several types:
SISD, SIMD, MISD, MIMD

These classifications were proposed by Michael J.
Flynnin 1966

Flynn's Taxonomy

See: https://en.wikipedia.ora/wiki/Flynn%27s taxonomy

CS 220: Parallel Computing

https://en.wikipedia.org/wiki/Flynn's_taxonomy

Flynn's Taxonomy: Breakdown

= Each architecture is composed of three elements
= PUs - processing units / processing elements

= The instruction pool

= Your program, translated to machine code

= The data pool

= The data you're working with

8/25/17 CS 220: Parallel Computing

SISD

Single instruction, single
data SISD Instruction Pool

One CPU, one core, one
thread (uniprocessor)

One pool of memory

One thing at a time!

PCs up until 2010 or so

Data Pool
)
(-
T

Source: Cburnett. CC BY-SA 3.0. https://en.wikipedia.org/wiki/Flynn%?27s_taxonomy

8/25/17 CS 220: Parallel Computing 9

SIMD

Single instruction,

multiple data stream SIMD

Instruction Pool

Each PU executes the

same instructions on a

» | PU |+

different piece of the
data

Data Pool

» | PU |+

Great for highly-parallel
workloads (GPUs)

PU |

A 4

»| PU [«

Source: Cburnett. CC BY-SA 3.0. https://en.wikipedia.org/wiki/Flynn%?27s_taxonomy

8/25/17

CS 220: Parallel Computing

10

MISD

Multiple instruction, single
data MISD Instruction Pool

More uncommon

Here, the data is fed to
multiple PUs

Each PU executes the
same instructions

Data Pool
I
v
—
(-
T
—
(-
T

Then the results are
compared

Fault tolerance
Source: Cburnett. CC BY-SA 3.0. https://en.wikipedia.org/wiki/Flynn%?27s_taxonomy

8/25/17 CS 220: Parallel Computing 11

MIMD

Multiple instruction,

multiple data MIMD Instruction Pool
Nodes work ~ ~
Independently

Multi-core PCs, E —|PU|+ “—|PU|—
distributed systems E

Our focus in this class

Source: Cburnett. CC BY-SA 3.0. https://en.wikipedia.org/wiki/Flynn%?27s_taxonomy

8/25/17

CS 220: Parallel Computing

12

Amdahl's Law [1/2]

8/25/17

In the best case scenario, doubling the number of
cores will halve your execution time

In practice, this is difficult

There is overhead associated with parallelism

Amdahl’'s law puts a bound on potential speedup:

S —speedup
Sy—— P — parallelizable portion
(1—-P)+ % N — number of PUs

CS 220: Parallel Computing

13

Amdanhl’'s Law [2/2]

Speedup

20 1

18 |

16 |

14

12 |

10

Amdahl's Law

/ Parallel portion
50%

/e 75%

/ —_—— 0%
/ —— 05%

N -+ «© ©o N
™ o

2

5

1
1024
2048
4096 -
8192

Number of processors

By Daniels220 at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=667855"1

8/25/17

CS 220: Parallel Computing

16384

32768

65536 -

14

Today's Schedule

= Parallel Computing Background
= Diving in: MPI

= The Jetson cluster

3/7/18 CS 220: Parallel Computing

15

Message Passing Interface

3/7/18

Message passing is the most common paradigm for
programming distributed memory systems

Processors coordinate their activities by sending
messages to each other across the network

Infiniband
Ethernet

Message Passing Interface, or just MPI, gives us C
functions to do this

CS 220: Parallel Computing

16

Ranks

With MPI, we won't just be running a single program
anymore

Now, we'll deal with multiple processes

These processes are identified by nonnegative
Integer ranks

If there are p processes, the processes will have
ranks0,1,2,....p - 1

3/7/18 CS 220: Parallel Computing

17

Installing MPI

On Linux, it's as easy as installing the openmpi group
of packages:

apt-get install openmpi-bin openmpi-common
libopenmpil*
Newer Macs don't come with MPI already installed,
so you will need a 3" party package manager:
Homebrew (http://brew.sh), MacPorts

Then install openmpi

Windows: cygwin openmpi package is buggy

3/7/18 CS 220: Parallel Computing 18

http://brew.sh/

Compiling MPI Applications

= To compile your MPI code, you'll need a new
command:

= mpicc
= This Is just a wrapper around gcc or whatever
compiler you have on your system

= Sets up compilation with the correct libraries and
options

3/7/18 CS 220: Parallel Computing

19

Running MPI Applications

You can't just run a.out or whatever your executable
IS called

Instead, you'll need to use an MPI launcher:

orterun -n 4 ./a.out
(will run a.out with four processes)

mpiexec -n 4 ./a.out
(exactly the same thing!)

mpiexec -n 4 --hostfile=jets.txt ./a.out
(runs on multiple machines)

3/7/18 CS 220: Parallel Computing

20

Hello World

As usual, we need to write a "hello world" application
as our first step!

In MPI, we can print out some more information: the
hostname of the machine, its rank, and the total
number of processes

Let's try this out...

3/7/18 CS 220: Parallel Computing

21

MPI_Init()

Needs to be run before you do anything else

You can pass in NULL for both of its arguments, or
you can pass in the argc and argv command line
arguments

If you do that, it'll remove any
orterun/mpiexec/mpirun-related stuff from the

command line

3/7/18 CS 220: Parallel Computing 22

MPI Communicators

You might've notice MPI_COMM_WORLD in the
example

This is the global communicator group

You can create groups of processes to coordinate
your distributed applications

For instance, maybe one group will work on the upper-
left corner of an image

3/7/18 CS 220: Parallel Computing

23

Helpful Functions

3/7/18

/* Total number of processes in this MPI communicator */
int comm_sz;

MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);

/* Get the rank of this processor x/
int rank;

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

/% Get the host name of this processor %/
char hostname[MPI_MAX_PROCESSOR_NAME];
int name_sz;

MPI_Get_processor_name(hostname, &name_sz);

CS 220: Parallel Computing

24

Cleaning Up

3/7/18

At the end of your MPI program you must call:
MPI Finalize();

This cleans up all the MPI state information that was
being held while your program ran

Finishes all pending communications

After calling this, executing any MPI function will raise
an error

CS 220: Parallel Computing

25

MPI: Summing Up

3/7/18

At a basic level, all MPIl does is clone your process
and run it multiple times

Without any special intervention, the processes will
all just do the same thing

However, we can branch based on process ranks to
organize processing activities and communicate

CS 220: Parallel Computing 26

Today's Schedule

= Parallel Computing Background
= Diving in: MPI

= The Jetson cluster

3/7/18 CS 220: Parallel Computing

27

The Jetsons

We have 24 NVIDIA Jetson TK1 machines

These are ARM-based boards for parallel computing
and GPU programming using NVIDIA CUDA
Hardware:

Quad-core ARM CPU

NVIDIA Kepler GPU with 192 CUDA Cores
2 GB Memory

3/7/18 CS 220: Parallel Computing

28

Jetson TK1

3/7/18 CS 220: Parallel Computing 29

Jetson TK1

= Somewhat like a
Raspberry Pi on steroids

= We'll use this cluster for
the rest of the semester

* (Including GPU
programming)

3/7/18 CS 220: Parallel Computing 30

Accessing the Jets

3/7/18

To reach the jet machines, you will need to use ssh

You may have done this in previous courses

Furthermore, you will need passwordless ssh set up
In order to effectively use MPI

This allows MPI to distribute your program across
multiple servers

CS 220: Parallel Computing 31

Cooling Your Jets

= To get on the Jetson machines, you first need to log
iInto stargate.cs.usfca.edu
= Then ssh to:
= jetO1
= jet02

= jet24

3/7/18 CS 220: Parallel Computing

32

