CS 220: Introduction to Parallel Computing

MPI: Sending/Receiving Messages

Lecture 14

Off Topic: The IOCCC

3/7/18

The International Obfuscated C Code Contestis a
celebration of the craziness of C

Using the preprocessor and C hacks, contestants
submit programs that look like one thing and do
another

Or maybe just look like something... ASCII art style

http://www.ioccc.org/

CS 220: Parallel Computing

http://www.ioccc.org/

Today's Agenda

= ssh setup
= MPI Review

= MPI_Send and MPI_Recv
= |/O Buffering and Blocking

3/7/18 CS 220: Parallel Computing

Today's Agenda

= ssh setup
= MPI Review

= MPI_Send and MPI_Recv
= |/O Buffering and Blocking

3/7/18 CS 220: Parallel Computing

Setting up SSH

A short guide is available on the schedule page

You should be able to type 'ssh <machine>" and be
logged in without a password

Things to know:
ssh-keygen utility

Your ~/.ssh/authorized-keys file

Let's do this now

3/7/18 CS 220: Parallel Computing

Today's Agenda

= ssh setup
= MPI Review

= MPI_Send and MPI_Recv
= |/O Buffering and Blocking

3/7/18 CS 220: Parallel Computing

Functions we Learned Last Class

/* Total number of processes in this MPI communicator */
int comm_sz;

MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);

/* Get the rank of this processor x/
int rank;

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

/% Get the host name of this processor %/
char hostname[MPI_MAX_PROCESSOR_NAME];
int name_sz;

MPI_Get_processor_name(hostname, &name_sz);

3/7/18 CS 220: Parallel Computing

mpicc

Instead of our usual gcc command, we use mpicc to
compile MPI programs

Recall the stages of compilation:
Preprocessing
Translation
Linking

For step 3, mpicc links against the MPI library

Dynamic linking

3/7/18 CS 220: Parallel Computing

Moving On

3/7/18

So far, all we've really done is ran several processes
in parallel (all at the same time)

The processes don't talk, they just print their
message and clean up

We could do this on a single machine without MPI

We could also run our programs on multiple machines
using ssh

To really benefit from MPI, we need to actually pass
messages!

CS 220: Parallel Computing

Today's Agenda

= ssh setup
= MPI Review

= MPl Send and MPI Recv
= |/O Buffering and Blocking

3/7/18 CS 220: Parallel Computing

10

MPI_Send

char buffer[100]; = pbuf —address of the send
buffer (first element)

int = count— number of

MPI_Send(elements in send buffer

const void *buf,

= datatype - kind of data in

int count, the buffer

MPI_Datatype datatype, = dest - rank of the

int dest, destination

int tag,

- - mm
MPI_Comm comm) tag — custo essage tag

= comm - MPl communicator

3/7/18 CS 220: Parallel Computing 11

MPI_Recv

char buffer[100]; * puf [OUT] — address of

the receive buffer

int MPI _Recv(

3/7/18

void *buf, = status [OUT] -
int count, information about the
MPI_Datatype datatype, sender (rank, tag, length)

int source,

* The rest of the
MPI_Comm comm, parameters are the same
MPI_Status *status) as MPI_Send

int tag,

CS 220: Parallel Computing 12

MPI| Data Types (1/2)

= Note that we have to specify a data type to send/receive

= A few helpful types:
= MPI_CHAR
= MPI_INT
= MPI_LONG
= MPI_UNSIGNED LONG
= MPI_FLOAT
= MPI_DOUBLE
= MPI_LONG_DOUBLE

3/7/18 CS 220: Parallel Computing

MPI Data Types (2/2)

Why would we need to specify these data types?
Doesn't C already know what we're sending?

Recall our MPI_Send/Recv functions, arg 1:

void *buf
We're passing in a void pointer

a "generic” pointer to any data type

3/7/18 CS 220: Parallel Computing

14

Revisiting C Arguments

3/7/18

C supports variable length args
Remember our distinction between main() and main(void)?

It does not support C++/Java/Python style
function overloading

So we have a few solutions:

printf() style where we embed the types in the format string
or arguments. This is what MPI does.

Naming functions for each type — e.g., print_double()

Preprocessor macros — limited use

CS 220: Parallel Computing 15

Compatibility

MPI is supported by several programming languages,
like C++, Fortran, etc.

_imiting the scope of the data types helps ensure the
Ibrary will be compatible with other languages

Different architectures have different ways to
organize data in memory

Big vs little endianness

3/7/18 CS 220: Parallel Computing 16

Source

= When we receive data, we char buffer[100];
can specify the source rank
= This lets us wait for int MPI_Recv(
process 1, then 2, etc... Or void *buf,
perhaps you're waiting to int count,

hear specifically from

MPI Datatype datatype,
process 682.

int source,

= We can also use int tag,
MPI_ANY SOURCE to MPI_Comm comm,
accept a message from any MPI_Status *status)
rank

3/7/18 CS 220: Parallel Computing 17

Tags

3/7/18

Since your programs may send and receive different
types of messages, the 'tag’ lets you identify them

#define HAPPY_TAG 1
#define SAD_TAG 2

This lets you make sure you are receiving the
message type you'd expect

MPI_Recv won't work if it receives a different tag

You can also accept any tag with MPIl_Recv by
passing in MPI_ANY_TAG

CS 220: Parallel Computing

18

Communicators

Recall that MPl communicators are just a way to
group processes

MPI_COMM_WORLD - all processes

This functionality makes it easy to send messages
selectively to particular processes

For now, we'll just use MPI_COMM_WORLD

3/7/18 CS 220: Parallel Computing

19

Status

3/7/18

If you pass in an MPI_Status struct to MPI_Recyv, it will
be populated with information about the sender

This can be useful, but we often don't need to worry
about the sender

Generally we're more worried about actually
processing the message

If we don't care about the status info, we can pass in
MPI_STATUS IGNORE

CS 220: Parallel Computing

20

Hello to the Next Level

= Given this, how can we enhance our hello world
application to:

= Send the hello messages all to one process

= Communicate in a chain (pass the messages on)

3/7/18 CS 220: Parallel Computing

21

Today's Agenda

= ssh setup
= MPI Review

= MPI_Send and MPI_Recv
= 1/0 Buffering and Blocking

3/7/18 CS 220: Parallel Computing

22

Buffering

When calling MP1_Send, MPI may decide to buffer
the operation

The message contents are copied into a buffer
managed by MPI
Kind of like doinga strcpy(dest, src)

The function returns immediately!

In other words, nothing has been sent but your
program goes on to the next line

This is an asynchronous or buffered send

3/7/18 CS 220: Parallel Computing 23

Synchronous Send

We are used to synchronous functions in C
Call the function
It does its work

Then it finally returns

Upside: no buffering required here

Reduces memory consumption

Downside: if the next steps in our program are printing
“hello world" or computing pi, do we really need to wait for
the message to reach its destination?

3/7/18 CS 220: Parallel Computing

24

Standard Send

The MPI_Send we've seen is a standard send

It decides whether or not the operation should be
buffered

MPI tries to choose the option that gives best
performance

To determine this, a cut off size is used
Message less than the cut off? Buffer it

Too big? Send it synchronously

3/7/18 CS 220: Parallel Computing

25

Recelving Data

MPI_Recv is considered a blocking call

When you use MPI_Recyv, it will wait until data arrives
before doing anything

This is kind of like our programs that use scanf

The function waits until we actually type a line before it
resumes execution

3/7/18 CS 220: Parallel Computing

26

Monitoring Blocked Processes

= We can see what processes are doing on our
machine with the top command

= On Linux, we have a nice status column:
= D uninterruptible sleep
= R running
= S sleeping (in the blocked state)
= T stopped
= Zzombie

3/7/18 CS 220: Parallel Computing

27

