
Lecture 14

CS 220: Introduction to Parallel Computing

MPI: Sending/Receiving Messages



§ The International Obfuscated C Code Contest is a 
celebration of the craziness of C

§ Using the preprocessor and C hacks, contestants 
submit programs that look like one thing and do 
another
§ Or maybe just look like something… ASCII art style

§ http://www.ioccc.org/

Off Topic: The IOCCC

3/7/18 CS 220: Parallel Computing 2

http://www.ioccc.org/


§ ssh setup
§ MPI Review

§ MPI_Send and MPI_Recv
§ I/O Buffering and Blocking

Today’s Agenda

3/7/18 CS 220: Parallel Computing 3



§ ssh setup
§ MPI Review

§ MPI_Send and MPI_Recv
§ I/O Buffering and Blocking

Today’s Agenda

3/7/18 CS 220: Parallel Computing 4



§ A short guide is available on the schedule page

§ You should be able to type ‘ssh <machine>’ and be 
logged in without a password

§ Things to know:
§ ssh-keygen utility
§ Your ~/.ssh/authorized-keys file

§ Let’s do this now

Setting up SSH

3/7/18 CS 220: Parallel Computing 5



§ ssh setup
§ MPI Review
§ MPI_Send and MPI_Recv
§ I/O Buffering and Blocking

Today’s Agenda

3/7/18 CS 220: Parallel Computing 6



/* Total number of processes in this MPI communicator */

int comm_sz; 

MPI_Comm_size(MPI_COMM_WORLD, &comm_sz); 

/* Get the rank of this processor */

int rank; 

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* Get the host name of this processor */

char hostname[MPI_MAX_PROCESSOR_NAME];

int name_sz;

MPI_Get_processor_name(hostname, &name_sz);

Functions we Learned Last Class

3/7/18 CS 220: Parallel Computing 7



§ Instead of our usual gcc command, we use mpicc to 
compile MPI programs

§ Recall the stages of compilation:
1. Preprocessing
2. Translation
3. Linking

§ For step 3, mpicc links against the MPI library
§ Dynamic linking

mpicc

3/7/18 CS 220: Parallel Computing 8



§ So far, all we’ve really done is ran several processes 
in parallel (all at the same time)

§ The processes don’t talk, they just print their 
message and clean up

§ We could do this on a single machine without MPI
§ We could also run our programs on multiple machines 

using ssh

§ To really benefit from MPI, we need to actually pass 
messages! 

Moving On

3/7/18 CS 220: Parallel Computing 9



§ ssh setup
§ MPI Review

§ MPI_Send and MPI_Recv
§ I/O Buffering and Blocking

Today’s Agenda

3/7/18 CS 220: Parallel Computing 10



char buffer[100];

int
MPI_Send(

const void *buf, 
int count, 
MPI_Datatype datatype,
int dest,
int tag, 
MPI_Comm comm) 

§ buf – address of the send 
buffer (first element)

§ count – number of 
elements in send buffer

§ datatype – kind of data in 
the buffer

§ dest – rank of the 
destination

§ tag – custom message tag
§ comm – MPI communicator

MPI_Send

3/7/18 CS 220: Parallel Computing 11



char buffer[100];

int MPI_Recv(
void *buf,
int count,
MPI_Datatype datatype,
int source, 
int tag,
MPI_Comm comm,
MPI_Status *status) 

§ buf [OUT] – address of 
the receive buffer

§ status [OUT] –
information about the 
sender (rank, tag, length)

§ The rest of the 
parameters are the same 
as MPI_Send

MPI_Recv

3/7/18 CS 220: Parallel Computing 12



§ Note that we have to specify a data type to send/receive

§ A few helpful types:
§ MPI_CHAR 
§ MPI_INT
§ MPI_LONG 
§ MPI_UNSIGNED_LONG
§ MPI_FLOAT
§ MPI_DOUBLE 
§ MPI_LONG_DOUBLE

MPI Data Types (1/2)

3/7/18 CS 220: Parallel Computing 13



§ Why would we need to specify these data types? 
Doesn’t C already know what we’re sending?

§ Recall our MPI_Send/Recv functions, arg 1:
§ void *buf

§ We’re passing in a void pointer
§ a “generic” pointer to any data type

MPI Data Types (2/2)

3/7/18 CS 220: Parallel Computing 14



§ C supports variable length args
§ Remember our distinction between main() and main(void)?

§ It does not support C++/Java/Python style 
function overloading

§ So we have a few solutions:
§ printf() style where we embed the types in the format string 

or arguments. This is what MPI does.
§ Naming functions for each type – e.g., print_double()
§ Preprocessor macros – limited use

Revisiting C Arguments

3/7/18 CS 220: Parallel Computing 15



§ MPI is supported by several programming languages, 
like C++, Fortran, etc.

§ Limiting the scope of the data types helps ensure the 
library will be compatible with other languages

§ Different architectures have different ways to 
organize data in memory
§ Big vs little endianness

Compatibility

3/7/18 CS 220: Parallel Computing 16



§ When we receive data, we 
can specify the source rank
§ This lets us wait for 

process 1, then 2, etc… Or 
perhaps you’re waiting to 
hear specifically from 
process 682.

§ We can also use 
MPI_ANY_SOURCE to 
accept a message from any 
rank

Source

3/7/18 CS 220: Parallel Computing 17

char buffer[100];

int MPI_Recv(
void *buf,
int count,
MPI_Datatype datatype,
int source, 
int tag,
MPI_Comm comm,
MPI_Status *status) 



§ Since your programs may send and receive different 
types of messages, the ’tag’ lets you identify them

§ #define HAPPY_TAG 1
§ #define SAD_TAG 2
§ This lets you make sure you are receiving the 

message type you’d expect
§ MPI_Recv won’t work if it receives a different tag

§ You can also accept any tag with MPI_Recv by 
passing in MPI_ANY_TAG

Tags

3/7/18 CS 220: Parallel Computing 18



§ Recall that MPI communicators are just a way to 
group processes
§ MPI_COMM_WORLD – all processes

§ This functionality makes it easy to send messages 
selectively to particular processes

§ For now, we’ll just use MPI_COMM_WORLD

Communicators

3/7/18 CS 220: Parallel Computing 19



§ If you pass in an MPI_Status struct to MPI_Recv, it will 
be populated with information about the sender

§ This can be useful, but we often don’t need to worry 
about the sender
§ Generally we’re more worried about actually 

processing the message

§ If we don’t care about the status info, we can pass in 
MPI_STATUS_IGNORE

Status

3/7/18 CS 220: Parallel Computing 20



§ Given this, how can we enhance our hello world 
application to:

§ Send the hello messages all to one process

§ Communicate in a chain (pass the messages on)

Hello to the Next Level

3/7/18 CS 220: Parallel Computing 21



§ ssh setup
§ MPI Review
§ MPI_Send and MPI_Recv
§ I/O Buffering and Blocking

Today’s Agenda

3/7/18 CS 220: Parallel Computing 22



§ When calling MPI_Send, MPI may decide to buffer
the operation

§ The message contents are copied into a buffer 
managed by MPI
§ Kind of like doing a strcpy(dest, src)

§ The function returns immediately!
§ In other words, nothing has been sent but your 

program goes on to the next line
§ This is an asynchronous or buffered send

Buffering

3/7/18 CS 220: Parallel Computing 23



§ We are used to synchronous functions in C
1. Call the function
2. It does its work
3. Then it finally returns

§ Upside: no buffering required here
§ Reduces memory consumption

§ Downside: if the next steps in our program are printing 
“hello world” or computing pi, do we really need to wait for 
the message to reach its destination?

Synchronous Send

3/7/18 CS 220: Parallel Computing 24



§ The MPI_Send we’ve seen is a standard send
§ It decides whether or not the operation should be 

buffered
§ MPI tries to choose the option that gives best 

performance

§ To determine this, a cut off size is used
§ Message less than the cut off? Buffer it
§ Too big? Send it synchronously

Standard Send

3/7/18 CS 220: Parallel Computing 25



§ MPI_Recv is considered a blocking call
§ When you use MPI_Recv, it will wait until data arrives 

before doing anything
§ This is kind of like our programs that use scanf

§ The function waits until we actually type a line before it 
resumes execution

Receiving Data

3/7/18 CS 220: Parallel Computing 26



§ We can see what processes are doing on our 
machine with the top command

§ On Linux, we have a nice status column:
§ D uninterruptible sleep
§ R running 
§ S sleeping (in the blocked state)
§ T stopped
§ Z zombie

Monitoring Blocked Processes

3/7/18 CS 220: Parallel Computing 27


