CS 220: Introduction to Parallel Computing

Blocking vs. Non-Blocking Calls

Lecture 15

Welcome Back!

= Hope everyone had a great spring break!

= Time to remember: What is this MPI thing?!

3/21/18 CS 220: Parallel Computing

A Note: Mini office Hours

3/21/18

Since several folks have class during my usual office
hours, I'm adding a couple more times:

3:00-3:30pm MW

We'll see how this goes over the next couple weeks
and if it works well I'll make the change permanent

CS 220: Parallel Computing

Today's Agenda

= Transferring files

= 1/0O Buffering and Blocking

3/21/18 CS 220: Parallel Computing

Today's Agenda

= Transferring files

= 1/0O Buffering and Blocking

3/21/18 CS 220: Parallel Computing

Transferring Files

Once you have ssh working, you're set!

If you use vim, emacs, nano, etc to edit your files on
the jet machines themselves...

We can also use ssh to copy files to the CS machines

Once the files are on any CS machine, they'll be
available everywhere

NFS

3/21/18 CS 220: Parallel Computing

Transferring with scp

Copies into my home directory:
scp local-file.txt mmalensek@stargate.cs.usfca.edu:

Make sure you have the trailing ‘:’ character!

Copies and renames the file:

scp local-file.txt
mmalensek@stargate.cs.usfca.edu:other-name.txt

Copies to a particular folder/directory:
scp local-file.txt
mmalensek@stargate.cs.usfca.edu:my_great _dir/subdirectory/

3/21/18 CS 220: Parallel Computing

Transferring with a GUI

scp works great, but it's not so user-friendly

A recommendation:
Cyberduck (https://cyberduck.io)

Works on Mac and Windows
Allows you to remote-edit files

Another option: FileZilla

Available on Linux too. Watch out for crapware installers
though!

Ubuntu: Files > Connect to Server

When you set them up, use SFTP to connect
sftp://stargate.cs.usfca.edu

3/21/18 CS 220: Parallel Computing

https://cyberduck.io)/

Today's Agenda

= Transferring files

= 1/0 Buffering and Blocking

3/21/18 CS 220: Parallel Computing

Buffering

When calling MPI_Send, MPI may decide to buffer
the operation

The message contents are copied into a buffer
managed by MPI

Kind of like doinga strcpy(dest, src)
The function returns immediately!

In other words, nothing has been sent but your
program goes on to the next line

This is an asynchronous or buffered send

3/21/18 CS 220: Parallel Computing 10

Synchronous Send

We are used to synchronous functions in C
Call the function
It does its work

Then it finally returns

Upside: no buffering required here

Reduces memory consumption

Downside: if the next steps in our program are printing
"hello world" or computing pi, do we really need to wait for
the message to reach its destination?

3/21/18 CS 220: Parallel Computing

11

Standard Send

The MPI_Send we've seenis a standard send

It decides whether or not the operation should be
buffered

MPI tries to choose the option that gives best
performance

To determine this, a cut off size is used
Message less than the cut off? Buffer it

Too big? Send it synchronously

3/21/18 CS 220: Parallel Computing

12

Recelving Data

MPI_Recv is considered a blocking call

When you use MPI_Recy, it will wait until data arrives
before doing anything

This is kind of like our programs that use scanf

The function waits until we actually type a line before it
resumes execution

3/21/18 CS 220: Parallel Computing

13

Monitoring Blocked Processes

= We can see what processes are doing on our
machine with the top command

= On Linux, we have a nice status column:
= D uninterruptible sleep
= Rrunning
= S sleeping (in the blocked state)
= T stopped

= /Zzombie

3/21/18 CS 220: Parallel Computing

14

