
Lecture 15

CS 220: Introduction to Parallel Computing

Blocking vs. Non-Blocking Calls

§ Hope everyone had a great spring break!

§ Time to remember: What is this MPI thing?!

§ …

Welcome Back!

3/21/18 CS 220: Parallel Computing 2

§ Since several folks have class during my usual office
hours, I’m adding a couple more times:
§ 3:00-3:30pm MW

§ We’ll see how this goes over the next couple weeks
and if it works well I’ll make the change permanent

A Note: Mini office Hours

3/21/18 CS 220: Parallel Computing 3

§ Transferring files
§ I/O Buffering and Blocking

Today’s Agenda

3/21/18 CS 220: Parallel Computing 4

§ Transferring files
§ I/O Buffering and Blocking

Today’s Agenda

3/21/18 CS 220: Parallel Computing 5

§ Once you have ssh working, you’re set!
§ If you use vim, emacs, nano, etc to edit your files on

the jet machines themselves…

§ We can also use ssh to copy files to the CS machines
§ Once the files are on any CS machine, they’ll be

available everywhere
§ NFS

Transferring Files

3/21/18 CS 220: Parallel Computing 6

Copies into my home directory:

scp local-file.txt mmalensek@stargate.cs.usfca.edu:

Make sure you have the trailing ‘:’ character!

Copies and renames the file:

scp local-file.txt
mmalensek@stargate.cs.usfca.edu:other-name.txt

Copies to a particular folder/directory:
scp local-file.txt

mmalensek@stargate.cs.usfca.edu:my_great_dir/subdirectory/

Transferring with scp

3/21/18 CS 220: Parallel Computing 7

§ scp works great, but it’s not so user-friendly
§ A recommendation:

Cyberduck (https://cyberduck.io)
§ Works on Mac and Windows
§ Allows you to remote-edit files

§ Another option: FileZilla
§ Available on Linux too. Watch out for crapware installers

though!
§ Ubuntu: Files > Connect to Server
§ When you set them up, use SFTP to connect

§ sftp://stargate.cs.usfca.edu

Transferring with a GUI

3/21/18 CS 220: Parallel Computing 8

https://cyberduck.io)/

§ Transferring files
§ I/O Buffering and Blocking

Today’s Agenda

3/21/18 CS 220: Parallel Computing 9

§ When calling MPI_Send, MPI may decide to buffer
the operation

§ The message contents are copied into a buffer
managed by MPI
§ Kind of like doing a strcpy(dest, src)

§ The function returns immediately!
§ In other words, nothing has been sent but your

program goes on to the next line
§ This is an asynchronous or buffered send

Buffering

3/21/18 CS 220: Parallel Computing 10

§ We are used to synchronous functions in C
1. Call the function
2. It does its work
3. Then it finally returns

§ Upside: no buffering required here
§ Reduces memory consumption

§ Downside: if the next steps in our program are printing
“hello world” or computing pi, do we really need to wait for
the message to reach its destination?

Synchronous Send

3/21/18 CS 220: Parallel Computing 11

§ The MPI_Send we’ve seen is a standard send
§ It decides whether or not the operation should be

buffered
§ MPI tries to choose the option that gives best

performance

§ To determine this, a cut off size is used
§ Message less than the cut off? Buffer it
§ Too big? Send it synchronously

Standard Send

3/21/18 CS 220: Parallel Computing 12

§ MPI_Recv is considered a blocking call
§ When you use MPI_Recv, it will wait until data arrives

before doing anything
§ This is kind of like our programs that use scanf

§ The function waits until we actually type a line before it
resumes execution

Receiving Data

3/21/18 CS 220: Parallel Computing 13

§ We can see what processes are doing on our
machine with the top command

§ On Linux, we have a nice status column:
§ D uninterruptible sleep
§ R running
§ S sleeping (in the blocked state)
§ T stopped
§ Z zombie

Monitoring Blocked Processes

3/21/18 CS 220: Parallel Computing 14

