
Lecture 16

CS 220: Introduction to Parallel Computing

Measuring Performance

§ MPI Collective Communication
§ Measuring Performance
§ Keeping Time
§ Putting it together: estimating pi

Today’s Agenda

3/21/18 CS 220: Parallel Computing 2

§ MPI Collective Communication
§ Measuring Performance
§ Keeping Time
§ Putting it together: estimating pi

Today’s Agenda

3/21/18 CS 220: Parallel Computing 3

§ Thus far we have focused on point-to-point
communication
§ Process A sends to Process B
§ Process C waits to hear from Process D

§ This is fine-grained, and it can be difficult to
coordinate when we’re working with thousands of
cores

§ MPI offers some functions that ease this burden:
collective communication

MPI Collective Communication

3/21/18 CS 220: Parallel Computing 4

int MPI_Bcast(

void *buffer,

int count,

MPI_Datatype datatype,

int root,

MPI_Comm comm)

§ Mostly the same as
MPI_Send!

§ root tells us which
process will send the
message to the rest
§ Nice because we don’t

need if (p == 0) { … }

Broadcasting

3/21/18 CS 220: Parallel Computing 5

§ One unintuitive thing about MPI_Bcast: all the
participating processes call the function

§ Process 8 can’t call MPI_Bcast and then the rest just
MPI_Recv to get the value!
§ Instead, they all just call MPI_Bcast and retrieve the

result

§ So remember folks: when you use MPI_Bcast, make
sure all the processes involved are calling the
function!

Bcast: A Note

3/21/18 CS 220: Parallel Computing 6

int MPI_Barrier(
MPI_Comm comm)

§ This blocks execution
until all processes
execute it
§ Lets us sync up

processes

§ Great for situations
where we want all
processes to check in

Barrier Synchronization

3/21/18 CS 220: Parallel Computing 7

int MPI_Reduce(
void* send_data,
void* recv_data,
int count,
MPI_Datatype datatype,
MPI_Op op,
int root,
MPI_Comm communicator)

§ MPI can even take care
of collecting data for us

§ Summing up data from
several processes

§ Finding the maximum
value

§ Etc.
§ We’ll see this today

Reduction Operations

3/21/18 CS 220: Parallel Computing 8

int
MPI_Scatter(

const void *sendbuf,
int sendcount,
MPI_Datatype sendtype,
void *recvbuf,
int recvcount,
MPI_Datatype recvtype,
int root,
MPI_Comm comm)

§ Somewhat like a
broadcast

§ Sends data to all the
processes
§ From root

§ Automatically divides the
input based on process
ranks

MPI_Scatter

3/21/18 CS 220: Parallel Computing 9

int
MPI_Gather(

const void *sendbuf,
int sendcount,
MPI_Datatype sendtype,
void *recvbuf,
int recvcount,
MPI_Datatype recvtype,
int root,
MPI_Comm comm)

§ Picks up the scattered
pieces and puts them
back together

§ Elements are transferred
back to root

§ What would
scatter+gather work well
for?

MPI_Gather

3/21/18 CS 220: Parallel Computing 10

§ A Few Technical Details
§ MPI Collective Communication
§ Measuring Performance
§ Keeping Time
§ Putting it together: estimating pi

Today’s Agenda

3/21/18 CS 220: Parallel Computing 11

§ There are two common metrics for measuring the
performance of our parallel algorithms:
§ Speedup
§ Parallel Efficiency

§ Evaluating these is crucial: if we’re not gaining
anything from parallelism, there’s no reason to do it

§ A closely related concept is scalability
§ How our algorithm performs when we give it more

resources

Measuring Parallel Performance

3/21/18 CS 220: Parallel Computing 12

§ The speedup of a parallel program is given by:

§ How long the serial (original, non-parallel) program
takes divided by the parallel run time

§ Best speedup possible: S = p
§ Where p is the number of processes

Speedup

3/21/18 CS 220: Parallel Computing 13

§ The parallel efficiency of a program is given by:

§ The speedup divided by the number of processes
§ Best efficiency possible: 1

Efficiency

3/21/18 CS 220: Parallel Computing 14

§ It’s possible to write an algorithm that has high
efficiency on two, four, eight cores, but:
§ Maybe when you try to run it on 16 cores efficiency

starts to drop

§ There are many reasons this can happen
§ Your algorithm requires a lot of communication
§ Your processes spend a lot of time blocked
§ In some cases, you’re only as fast as the slowest

worker

Scalability (1/2)

3/21/18 CS 220: Parallel Computing 15

§ A program that scales can use additional resources
effectively
§ Doubling the number of processes should halve the

execution time!

§ We can measure this by calculating parallel
efficiency

§ If efficiency decreases as we add processes, then
the algorithm is not scalable

Scalability (2/2)

3/21/18 CS 220: Parallel Computing 16

§ A Few Technical Details
§ MPI Collective Communication
§ Measuring Performance
§ Keeping Time
§ Putting it together: estimating pi

Today’s Agenda

3/21/18 CS 220: Parallel Computing 17

§ We’ve done a little bit of timing in our past lectures
§ Using the time command

§ Not fine-grained
§ We can only test how long it takes to run the entire

program
§ What happens when we prompt for a value? What

about application startup time (from the OS)?

§ We need to be able to track things at a finer level

Keeping Track of Time

3/21/18 CS 220: Parallel Computing 18

§ C includes a clock function that tells us the number
of clock ticks since the program started
§ Originally intended to be the number of CPU cycles

but is implementation-specific

§ Different hardware has different clock resolutions
§ Often clock() is a fairly low-resolution timer

§ To translate the abstract notion of clock ticks into
time, we can use CLOCKS_PER_SEC
§ clock() / CLOCKS_PER_SEC

The clock() function

3/21/18 CS 220: Parallel Computing 19

§ On Unix-based systems, this function provides the
wall clock time, generally with 1 us precision
§ Also hardware dependent

§ Wall clock time: the actual time taken for something
to run
§ As opposed to CPU time

§ Usually a better option than clock(), if you have it
§ #include <timer.h>

The gettimeofday() function

3/21/18 CS 220: Parallel Computing 20

§ In MPI programs, we have a third option: MPI_Wtime()
§ This returns a double with the current wall clock time

§ Uses the best timer available on your platform

§ For our MPI programs, we’ll use this

And finally, MPI_Wtime()

3/21/18 CS 220: Parallel Computing 21

§ Let’s time an operation:
double time1 = MPI_Wtime(); /* Start */

solve_worlds_problems(true);

/* Now we wait... */

double time2 = MPI_Wtime(); /* End */

§ How long did it take?
§ printf("Time: %.10lf\n", time2 - time1);

Calculating Time Elapsed

3/21/18 CS 220: Parallel Computing 22

§ A Few Technical Details
§ MPI Collective Communication
§ Measuring Performance
§ Keeping Time
§ Putting it together: estimating pi

Today’s Agenda

3/21/18 CS 220: Parallel Computing 23

§ We can estimate pi with the following formula:

§ The more iterations, the more accurate our estimate gets

§ We can split these iterations up across multiple
processes to speed things up

§ MPI to the rescue!

Leibniz Formula for pi

3/21/18 CS 220: Parallel Computing 24

