CS 220: Introduction to Parallel Computing

Measuring Performance

Lecture 16

Today's Agenda

= MPI Collective Communication
= Measuring Performance
= Keeping Time

= Putting it together: estimating pi

3/21/18 CS 220: Parallel Computing

Today's Agenda

= MPI Collective Communication
= Measuring Performance
= Keeping Time

= Putting it together: estimating pi

3/21/18 CS 220: Parallel Computing

MPI Collective Communication

3/21/18

Thus far we have focused on point-to-point
communication

Process A sends to Process B
Process C waits to hear from Process D

This is fine-grained, and it can be difficult to
coordinate when we're working with thousands of
cores

MPI offers some functions that ease this burden:
collective communication

CS 220: Parallel Computing

Broadcasting

int MPI_Bcast(= Mostly the same as

3/21/18

void *buffer, MPI| Send!

int count, i
= root tells us which

process will send the
message to the rest

MPI Datatype datatype,
int root,

MPI _Comm comm)
= Nice because we don't

needif(p==0){...}

CS 220: Parallel Computing

Bcast: A Note

3/21/18

One unintuitive thing about MPI_Bcast: all the
participating processes call the function

Process 8 can't call MPl_Bcast and then the rest just
MPI_Recv to get the value!
Instead, they all just call MPI_Bcast and retrieve the
result

So remember folks: when you use MPI_Bcast, make
sure all the processes involved are calling the
function!

CS 220: Parallel Computing

Barrier Synchronization

int MPI Barrier(= This blocks execution
until all processes

MPI_Comm comm) _
execute It

* Lets us sync up
processes

= Great for situations
where we want all
processes to checkin

3/21/18 CS 220: Parallel Computing

Reduction Operations

int MPI_Reduce(= MPI| can even take care

3/21/18

void* send_data, of collecting data for us

void* recv_data,

int count, = Summing up data from
MPI Datatype datatype, several processes
MP1_Op op, = Finding the maximum
int root,
_ value
MPI Comm communicator)
= Etc.

= We'll see this today

CS 220: Parallel Computing

MPI Scatter

int

MPT _

3/21/18

= Somewhat like a
Scatter(
const void *sendbuf, broadcast
int sendcount, = Sends data to all the
MPI Datatype sendtype, processes
void *recvbuf,
_ * From root
int recvcount,
MPI Datatype recvtype, = Automatically divides the
int root, iInput based on process
MPI_Comm comm) ranks

CS 220: Parallel Computing

MPI Gather

int
MPI_ Gather(

3/21/18

= Picks up the scattered
const void xsendbuf, pieces and puts them

int sendcount, back together

MPI Datatype sendtype,
void *recvbuf, = Elements are transferred

int recvcount, back to root
MPI Datatype recvtype,

_ = What would

int root,

MPI_Comm comm) scatter+gather work well
for?

CS 220: Parallel Computing

10

Today's Agenda

= A Few Technical Detalils

= MPI Collective Communication
= Measuring Performance

= Keeping Time

= Putting it together: estimating pi

3/21/18 CS 220: Parallel Computing

11

Measuring Parallel Performance

3/21/18

There are two common metrics for measuring the
performance of our parallel algorithms:

Speedup
Parallel Efficiency

Evaluating these is crucial: if we're not gaining
anything from parallelism, there's no reason to do it

A closely related concept is scalability

How our algorithm performs when we give it more
resources

CS 220: Parallel Computing

12

Speedup

The speedup of a parallel program is given by:

5 o Tserial

7-parallel

How long the serial (original, non-parallel) program
takes divided by the parallel run time

Best speedup possible: S=p

Where p is the number of processes

3/21/18 CS 220: Parallel Computing

13

Efficiency

= The parallel efficiency of a program is given by:

E — § . T serial

P B praraIleI

= The speedup divided by the number of processes

= Best efficiency possible: 1

3/21/18 CS 220: Parallel Computing

14

Scalability (1/2)

It's possible to write an algorithm that has high
efficiency on two, four, eight cores, but:

Maybe when you try to run it on 16 cores efficiency
starts to drop

There are many reasons this can happen
Your algorithm requires a lot of communication
Your processes spend a lot of time blocked

In some cases, you're only as fast as the slowest
worker

3/21/18 CS 220: Parallel Computing

15

Scalability (2/2)

A program that scales can use additional resources
effectively

Doubling the number of processes should halve the
execution time!

We can measure this by calculating parallel
efficiency

If efficiency decreases as we add processes, then
the algorithm is not scalable

3/21/18 CS 220: Parallel Computing 16

Today's Agenda

= A Few Technical Detalils

= MPI Collective Communication
= Measuring Performance

= Keeping Time

= Putting it together: estimating pi

3/21/18 CS 220: Parallel Computing

17

Keeping Track of Time

We've done a little bit of timing in our past lectures

Using the time command

Not fine-grained

We can only test how long it takes to run the entire
program

What happens when we prompt for a value? What
about application startup time (from the OS)?

We need to be able to track things at a finer level

3/21/18 CS 220: Parallel Computing 18

The clock() function

3/21/18

C includes a clock function that tells us the number
of clock ticks since the program started

Originally intended to be the number of CPU cycles
but is implementation-specific

Different hardware has different clock resolutions

Often clocki) is a fairly low-resolution timer

To translate the abstract notion of clock ticks into
time, we can use CLOCKS PER_SEC

clock() / CLOCKS PER SEC

CS 220: Parallel Computing

19

The gettimeofday() function

3/21/18

On Unix-based systems, this function provides the
wall clock time, generally with 1 us precision

Also hardware dependent

Wall clock time: the actual time taken for something
torun

As opposed to CPU time
Usually a better option than clock(), if you have it

#include <timer.h>

CS 220: Parallel Computing

20

And finally, MPl_Wtime()

= In MPI programs, we have a third option: MPl_Wtime()

= This returns a double with the current wall clock time

= Uses the best timer available on your platform

= For our MPI programs, we'll use this

3/21/18 CS 220: Parallel Computing

21

Calculating Time Elapsed

= Let's time an operation:

double timel = MPI Wtime(); /* Start x/
solve _worlds problems(true);

/* Now we wait... */

double time? = MPI Wtime(); /* End x/

= How long did it take?
= printf("Time: %.101f\n", time2 - timel);

3/21/18 CS 220: Parallel Computing

22

Today's Agenda

= A Few Technical Detalils

= MPI Collective Communication
= Measuring Performance

= Keeping Time

= Putting it together: estimating pi

3/21/18 CS 220: Parallel Computing

23

Leibniz Formula for pi

= We can estimate pi with the following formula:

1 1 1 1 T

1] — — 4+ = — 2 4 = o= —,

3 5 7 9 1

= The more iterations, the more accurate our estimate gets

= We can split these iterations up across multiple
processes to speed things up

= MPI to the rescue!

3/21/18 CS 220: Parallel Computing

24

