
Lecture 18

CS 220: Introduction to Parallel Computing

Communication Patterns

§ General Announcements
§ Communication Approaches
§ Tree Broadcast/Reduce
§ Bitwise Operations

Today’s Agenda

3/26/18 CS 220: Parallel Computing 2

§ General Announcements
§ Communication Approaches
§ Tree Broadcast/Reduce
§ Bitwise Operations

Today’s Agenda

3/26/18 CS 220: Parallel Computing 3

§ P1 Grades are on Canvas
§ Check your repo for a file named ‘grade-info.md’

§ This contains the outputs from the test cases we ran
on your code

§ Any deductions are listed at the end

§ Please let me know if you have any questions!

General Announcements

3/26/18 CS 220: Parallel Computing 4

§ I mentioned we’d go over non-blocking
communication for P2

§ Let’s take a look at the example code:
§ blocking.c
§ non-blocking.c

Non-Blocking Communication

3/26/18 CS 220: Parallel Computing 5

§ General Announcements
§ Communication Approaches
§ Tree Broadcast/Reduce
§ Bitwise Operations

Today’s Agenda

3/26/18 CS 220: Parallel Computing 6

§ We’ve looked at a few different communication
paradigms:
§ Point-to-point
§ Ring
§ One-to-many

§ What are the advantages/disadvantages of each?

Communication

3/26/18 CS 220: Parallel Computing 7

§ Process A sends a message to Process B
§ MPI_Send
§ MPI_Recv

§ Or in other words:
§ Read a buffer on Process A
§ Copy the value to a buffer on Process B

§ Free-form!
§ Lets us define whatever communication we want

Point-to-Point Communication

3/26/18 CS 220: Parallel Computing 8

§ Here, we form a ring of processes

§ Each process only needs to know about its:
§ Predecessor
§ Successor

§ Great for workflows: each process does something
different and then sends its result to the next

§ Not so great for doing a single thing in parallel!

Ring Topology

3/26/18 CS 220: Parallel Computing 9

Ring Layout

3/26/18 CS 220: Parallel Computing 10

§ Sometimes we need to pick a single process and let
it coordinate things

§ In this case, that process may broadcast to others in
a particular MPI communicator
§ MPI_Bcast

§ Optimized by the MPI library

§ We commonly use rank 0 to read input, organize
data, or parameterize our computations

One-to-many

3/26/18 CS 220: Parallel Computing 11

Broadcasting

3/26/18 CS 220: Parallel Computing 12

§ One unintuitive thing about MPI_Bcast: all the
participating processes call the function

§ Process 8 can’t call MPI_Bcast and then the rest just
MPI_Recv to get the value!

§ So remember folks: when you use MPI_Bcast, make
sure all the processes involved are calling the
function!

Broadcast Note

3/26/18 CS 220: Parallel Computing 13

§ Let’s say we want to talk to everybody, but don’t want
to make them all call MPI_Bcast

§ We can implement this with MPI_Send, right?

int i;

for (i = 0; i < comm_sz; ++i) {

if (i != my_rank) {

MPI_Send(buffer, 100, MPI_CHAR, i, 0, MPI_COMM_WORLD);

}

}

Implementing our own Broadcast

3/26/18 CS 220: Parallel Computing 14

§ Our loop-based broadcast is not efficient
§ Why?

§ We have to send to all the processes in order
§ After we send the data to process 1, what does it do?

§ It moves on (or waits around for something else to
happen, depending on your code!)

§ It would be better to have the other processes help
us out with our broadcast, right?

Broadcast Performance

3/26/18 CS 220: Parallel Computing 15

Tree-Structured Broadcast

3/26/18 CS 220: Parallel Computing 16

Tree Layout

3/26/18 CS 220: Parallel Computing 17

§ We can also do this in reverse to collect a value
§ For instance: a global sum

§ We want to sum the numbers across all nodes
§ Rather than spamming a single node with values, let’s

pass the values on to our neighbors
§ Kind of like the ring topology, but much more efficient!

Tree Reduce

3/26/18 CS 220: Parallel Computing 18

Tree-Structured Reduction

3/26/18 CS 220: Parallel Computing 19

* That’s right, I just
reused the same
diagram in reverse

§ Pass 0:
§ Process 0 receives from 1
§ Process 2 receives from 3
§ Process 4 receives from 5
§ Process 6 receives from 7

§ Pass 1:
§ Process 0 receives from 2
§ Process 4 receives from 6

§ Pass 2:
§ Process 0 receives from 4

Communication Workflow

3/26/18 CS 220: Parallel Computing 20

§ General Announcements
§ Communication Approaches
§ Tree Broadcast/Reduce
§ Bitwise Operations

Today’s Agenda

3/26/18 CS 220: Parallel Computing 21

§ This communication pattern can save us time, but
how do we actually implement it?

§ We could use a bunch of if statements, but that
seems like it would be a pain
§ Plus, how would we scale out with more processes?

§ We could also compute the number of phases
required, figure out who will send what, and then do it

§ We have an easier way…

Implementing Tree Reduce

3/26/18 CS 220: Parallel Computing 22

§ Pass 0:
§ Process 000 receives from 001
§ Process 010 receives from 011
§ Process 100 receives from 101
§ Process 110 receives from 111

§ Pass 1:
§ Process 000 receives from 010
§ Process 100 receives from 110

§ Pass 2:
§ Process 000 receives from 100

Looking at the Bits

3/26/18 CS 220: Parallel Computing 23

§ In Phase 0, we flip the first bit
§ In Phase 1, we flip the second bit
§ In Phase 2, we flip the third bit

§ C has a handy way to do this:
Exclusive Or (XOR)

A Pattern Emerges…

3/26/18 CS 220: Parallel Computing 24

§ XOR is a bitwise operation
§ Gives True (1) when the number of True inputs is odd

§ In C, use the ^ operator: A ^ B

Exclusive Or

3/26/18 CS 220: Parallel Computing 25

Input Output
A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

§ To find our “partner,” we’ll do:
my_rank ^ 1

§ This works in the first phase. Then what?
§ We need to XOR with binary 010 (2)
§ my_rank ^ 2

§ Ok, how about the last phase?
§ XOR with binary 100 (4)
§ Hrm…

Putting it Together

3/26/18 CS 220: Parallel Computing 26

§ A great way to figure out what to XOR with is using a
bitmask

§ We’ll start our bitmask as 1 and then shift its value
with each phase:
unsigned int bitmask = 1
/* Next phase: (left shift by one) */
bitmask = bitmask << 1

Bit Shifting

3/26/18 CS 220: Parallel Computing 27

while not done and bitmask < comm_sz:
partner = my_rank ^ bitmask
if my_rank < partner:

receive value
update our sum
bitmask = bitmask << 1

else:
send our value
done = 1

return sum

Global Sum, In Pseudocode:

3/26/18 CS 220: Parallel Computing 28

§ General Announcements
§ Communication Approaches
§ Tree Broadcast/Reduce
§ Bitwise Operations

Today’s Agenda

3/26/18 CS 220: Parallel Computing 29

§ C supports the following bitwise operations:
§ OR (|)
§ AND (&)
§ XOR (^)
§ Unary bitwise complement or (~)

§ And of course, bit shifting:
§ Left shift (<<)
§ Right shift (>>)

Bitwise Operations

3/26/18 CS 220: Parallel Computing 30

Input Output
A B A OR B
0 0 0
0 1 1
1 0 1
1 1 1

Bitwise Or

3/26/18 CS 220: Parallel Computing 31

Input Output
A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1

Bitwise And

3/26/18 CS 220: Parallel Computing 32

§ Flips the bits!
§ ~ 1011 = 0100
§ ~ 1111 = 0000
§ Etc.

Unary bitwise complement or

3/26/18 CS 220: Parallel Computing 33

/* Prints out a 32-bit unsigned integer in binary */
void print_binary32(uint32_t num) {

int i;
for (i = 31; i >= 0; --i) {

uint32_t position = 1 << i;
printf("%c",

((num & position) == position) ? '1' : '0');
}

}
/* Hmm… What’s uint32_t? */

Printing a Number in Binary

3/26/18 CS 220: Parallel Computing 34

§ In Homework 6, we will implement the global sum

§ Head to the assignments page and get started!

HW6: Global Sum

3/26/18 CS 220: Parallel Computing 35

