CS 220: Introduction to Parallel Computing

Communication Patterns

Lecture 18

Today's Agenda

= General Announcements
= Communication Approaches
= Tree Broadcast/Reduce

= Bitwise Operations

3/26/18 CS 220: Parallel Computing

Today's Agenda

= General Announcements
= Communication Approaches
= Tree Broadcast/Reduce

= Bitwise Operations

3/26/18 CS 220: Parallel Computing

General Announcements

P1 Grades are on Canvas

Check your repo for a file named ‘grade-info.md’

This contains the outputs from the test cases we ran
on your code

Any deductions are listed at the end

Please let me know if you have any questions!

3/26/18 CS 220: Parallel Computing

Non-Blocking Communication

= | mentioned we'd go over non-blocking
communication for P2

= Let's take a look at the example code:
= blocking.c
= non-blocking.c

3/26/18 CS 220: Parallel Computing

Today's Agenda

= General Announcements
= Communication Approaches
= Tree Broadcast/Reduce

= Bitwise Operations

3/26/18 CS 220: Parallel Computing

Communication

= We've looked at a few different communication
paradigms:

* Point-to-point
= Ring

= One-to-many

= What are the advantages/disadvantages of each?

3/26/18 CS 220: Parallel Computing

Point-to-Point Communication

= Process A sends a message to Process B
= MPI_Send
= MPI _Recv

= Or in other words:
= Read a buffer on Process A
= Copy the value to a buffer on Process B

= Free-form!

= Lets us define whatever communication we want

3/26/18 CS 220: Parallel Computing

Ring Topology

Here, we form a ring of processes

Each process only needs to know about its:
Predecessor
Successor

Great for workflows: each process does something
different and then sends its result to the next

Not so great for doing a single thing in parallel!

3/26/18 CS 220: Parallel Computing

Ring Layout

3/26/18

CS 220: Parallel Computing

10

One-to-many

Sometimes we need to pick a single process and let
It coordinate things

In this case, that process may broadcast to others in
a particular MPl communicator

MPI| Bcast
Optimized by the MPI library

We commonly use rank 0 to read input, organize
data, or parameterize our computations

3/26/18 CS 220: Parallel Computing

11

Broadcasting

CS 220: Parallel Computing

Broadcast Note

3/26/18

One unintuitive thing about MPI_Bcast: all the
participating processes call the function

Process 8 can't call MPl_Bcast and then the rest just
MPI_Recv to get the value!

So remember folks: when you use MPI_Bcast, make
sure all the processes involved are calling the
function!

CS 220: Parallel Computing

13

Implementing our own Broadcast

= Let's say we want to talk to everybody, but don't want
to make them all call MP| _Bcast

= We can implement this with MPI_Send, right?

int 1;
for (1 = 0; 1 < comm_sz; ++1) {
if (1 != my_rank) {
MPI_Send(buffer, 100, MPI_CHAR, i, @, MPI_COMM_WORLD);

3/26/18 CS 220: Parallel Computing 14

Broadcast Performance

3/26/18

Our loop-based broadcast is not efficient
Why?

We have to send to all the processes in order

After we send the data to process 1, what does it do?

It moves on (or waits around for something else to
happen, depending on your code!)

It would be better to have the other processes help
us out with our broadcast, right?

CS 220: Parallel Computing 15

Tree-Structured Broadcast

O—O

3/26/18 CS 220: Parallel Computing

16

Tree Layout

3/26/18

CS 220: Parallel Computing

17

Tree Reduce

We can also do this in reverse to collect a value

For instance: a global sum

We want to sum the numbers across all nodes

Rather than spamming a single node with values, let's
pass the values on to our neighbors

Kind of like the ring topology, but much more efficient!

3/26/18 CS 220: Parallel Computing 18

Tree-Structured Reduction

* That's right, | just
reused the same
diagram in reverse

OOO®
IOl

3/26/18 CS 220: Parallel Computing 19

Communication Workflow

= Pass O:
= Process O receives from 1
= Process 2 receives from 3
= Process 4 receives fromb5
= Process 6 receives from 7

= Pass 1:

= Process O receives from 2
= Process 4 receives from 6

= Pass 2:
= Process O receives from 4

3/26/18 CS 220: Parallel Computing

20

Today's Agenda

= General Announcements
= Communication Approaches
= Tree Broadcast/Reduce

= Bitwise Operations

3/26/18 CS 220: Parallel Computing

21

Implementing Tree Reduce

3/26/18

This communication pattern can save us time, but
how do we actually implement it?

We could use a bunch of 1 statements, but that
seems like it would be a pain

Plus, how would we scale out with more processes?

We could also compute the number of phases
required, figure out who will send what, and then do it

We have an easier way...

CS 220: Parallel Computing 22

Looking at the Bits

= Pass O:
* Process 000 receives from 001
= Process 010 receives from 011
= Process 100 receives from 101
= Process 110 receives from 111

= Pass 1:

= Process 000 receives from 010
= Process 100 receives from 110

= Pass 2:
= Process 000 receives from 100

3/26/18 CS 220: Parallel Computing

QOO

OGO

OO

OO

©

©

23

A Pattern Emerges...

3/26/18

* |In Phase 0, we f

= In Phase 1, we f

= In Phase 2, we f

Ip t
Ip t
Ip t

ne first bit

ne second bit

ne third bit

= C has a handy way to do this:
Exclusive Or (XOR)

CS 220: Parallel Computing

24

Exclusive Or

= XOR is a bitwise operation

= Gives True (1) when the number of True inputs is odd

A B AXORB
0 0 0
0 1 1
1 0 1
1 1 0

* In C, use the A operator:AAB

3/26/18 CS 220: Parallel Computing

25

Putting it Together

= To find our “partner,” we'll do:
my_rank A 1

= This works in the first phase. Then what?
= We need to XOR with binary 010 (2)
=my_rank A 2

= Ok, how about the last phase?
= XOR with binary 100 (4)

= Hrm...

3/26/18 CS 220: Parallel Computing

26

Bit Shifting

A great way to figure out what to XOR with is using a
bitmask

We'll start our bitmask as 1 and then shift its value
with each phase:

unsigned 1int bitmask =1
/* Next phase: (left shift by one) x*/
bitmask = bitmask << 1

3/26/18 CS 220: Parallel Computing

27

Global Sum, In Pseudocode:

while not done and bitmask < comm _sz:
partner = my_rank A bitmask
if my_rank < partner:

receive value
update our sum
bitmask = bitmask << 1

else:

send our value
done = 1

return sum

3/26/18 CS 220: Parallel Computing

28

Today's Agenda

= General Announcements
= Communication Approaches
= Tree Broadcast/Reduce

= Bitwise Operations

3/26/18 CS 220: Parallel Computing

29

Bitwise Operations

= C supports the following bitwise operations:
=OR(|)
= AND(&)
= XOR(AN)
= Unary bitwise complementor(~)
= And of course, bit shifting:

= Leftshift(<<)
= Right shift (>>)

3/26/18 CS 220: Parallel Computing

30

Bitwise Or

3/26/18

A
0
0
1
1

B AORB
0 0
1 1
0 1
1 1

CS 220: Parallel Computing

31

Bitwise And

A
0
0
1
1

3/26/18

B A AND B
0 0
1 0
0 0
1 1

CS 220: Parallel Computing

32

Unary bitwise complement or

= Flips the bits!
= ~1011 =0100
= ~1111 =0000
= Etc.

3/26/18 CS 220: Parallel Computing

33

Printing a Number in Binary

/* Prints out a 32-bit unsigned integer in binary x/
void print_binary32(uint32_t num) {
int i;
for (1 = 31; 1 >= 0; --1) {
uint32_t position = 1 << 1i;
printf("%c",

((num & position) == position) 2 '1' : '0");

by
/* Hmm.. What’s uint32_t? %/

3/26/18 CS 220: Parallel Computing

34

HWG6: Global Sum

* In Homework 6, we will implement the global sum

* Head to the assignments page and get started!

3/26/18 CS 220: Parallel Computing

35

