
Lecture 19

CS 220: Introduction to Parallel Computing

Randomness and 
Collective Communication



§ Q&A
§ Random number generation
§ Collective Communication

Today’s Agenda

4/4/18 CS 220: Parallel Computing 2



§ Q&A
§ Random number generation
§ Collective Communication

Today’s Agenda

4/4/18 CS 220: Parallel Computing 3



§ We’ve made extensive use of MPI_Send and 
MPI_Recv

§ These are both blocking operations
§ The program won’t move on to the next instruction 

until the function call completes
§ If we’re sending and nobody hears our cry, then we’ll 

just sit there and wait
§ Same thing for receiving…

Blocking or Non-Blocking?

4/4/18 CS 220: Parallel Computing 4



§ Non-blocking functions are prefixed with an ”I”
§ MPI_Iprobe is our first: if there is no message 

available, it just returns immediately
§ MPI_Isend, MPI_Irecv as well
§ Question: should you use MPI_Isend or just 

MPI_Send in P2 when you shut down the threads?

Non-Blocking Operations

4/4/18 CS 220: Parallel Computing 5



§ In an MPI program, all the processes work 
independently unless they’re passing messages

§ If we use blocking operations, the processes will stop

§ How about getting everyone to sync up?
§ MPI_Barrier(MPI_COMM_WORLD)

§ A barrier is a gate that only opens when ALL the 
processes call the function
§ Or: they’re all executing the same function call

Getting Everyone to Stop

4/4/18 CS 220: Parallel Computing 6



§ Q&A
§ Random number generation
§ Collective Communication

Today’s Agenda

4/4/18 CS 220: Parallel Computing 7



§ You might’ve noticed two new function calls in HW6

§ random() and srandom()

§ These:
§ Generate a pseudorandom number
§ Seed the random number generator

§ So, thinking back to HW6…

Random

4/4/18 CS 220: Parallel Computing 8



srandom(my_rank + 1); 
my_contrib = random() % MAX_CONTRIB;
§ Here, we’re seeding the random number generator 

with our rank + 1

§ The seed is used as the starting point for the random 
number generation algorithm
§ Use the same seed? Then the same random numbers 

will be produced.

Generating Random Numbers

4/4/18 CS 220: Parallel Computing 9



§ So if we use the seed “1,” we’ll get the same random 
numbers every time

§ Maybe we actually want the value to be truly random 
– not something we could predict ahead of time

§ The common approach here is to use the current 
timestamp to seed the random number generator
§ If you run the program, time has continued ticking on 

and a new seed will be used every time
§ time() function

Making it Really Random

4/4/18 CS 220: Parallel Computing 10



§ Seeding the random number generator with time() 
doesn’t actually work with MPI programs though!

§ Why?
§ MPI launches your program multiple times in parallel
§ time() will return the same thing at all ranks

§ To solve this problem, we shift time ahead by the 
rank number
§ Ensures we’ll always get unique numbers each run!

Seeding with time()

4/4/18 CS 220: Parallel Computing 11



§ Q&A
§ Random number generation
§ Collective Communication

Today’s Agenda

4/4/18 CS 220: Parallel Computing 12



§ In HW6, we implemented a much more efficient 
global sum

§ Rather than simply sending all values to a single rank 
(process), we split the workload up

§ There are a few other types of collective
communication to cover…

Collective Communication

4/4/18 CS 220: Parallel Computing 13



Basic All-to-One Sum

4/4/18 CS 220: Parallel Computing 14



Tree Sum

4/4/18 CS 220: Parallel Computing 15



Tree Broadcast

4/4/18 CS 220: Parallel Computing 16



§ As we’ve seen with Project 2, we can use 
MPI_Reduce to have MPI do a tree sum for us

§ There’s another, similar function: MPI_Allreduce
§ What’s the difference?

§ Allreduce shares the result across all the ranks
§ Whereas reduce will just give one ”root” rank the 

answer

§ How is this communication pattern implemented?

MPI_Reduce

4/4/18 CS 220: Parallel Computing 17



One Approach: Sum & Broadcast

4/4/18 CS 220: Parallel Computing 18



Optimization: Butterfly

4/4/18 CS 220: Parallel Computing 19


