CS 220: Introduction to Parallel Computing

Randomness and

Collective Communication

Lecture 19



Today's Agenda

= QRA
= Random number generation

= Collective Communication

4/4/18 CS 220: Parallel Computing



Today's Agenda

= Q&A
= Random number generation

= Collective Communication

4/4/18 CS 220: Parallel Computing



Blocking or Non-Blocking?

We've made extensive use of MPl_Send and
MPI| Recv

These are both blocking operations

The program won't move on to the next instruction
until the function call completes

If we're sending and nobody hears our cry, then we'll
just sit there and wait

Same thing for receiving...

4/4/18 CS 220: Parallel Computing



Non-Blocking Operations

4/4/18

Non-blocking functions are prefixed with an “I”

MPI_lprobe is our first: if there is no message
available, it just returns immediately

MPI Isend, MPI _Irecv as well

Question: should you use MPI_Isend or just
MPI_Send in P2 when you shut down the threads?

CS 220: Parallel Computing



Getting Everyone to Stop

4/4/18

In an MPI program, all the processes work
Independently unless they're passing messages

If we use blocking operations, the processes will stop

How about getting everyone to sync up?
MPI_Barrier(MPI_COMM_WORLD)

A barrier is a gate that only opens when ALL the
processes call the function

Or: they're all executing the same function call

CS 220: Parallel Computing



Today's Agenda

= QRA
= Random number generation

= Collective Communication

4/4/18 CS 220: Parallel Computing



Random

You might've noticed two new function calls in HW6
random() and srandom()

These:

Generate a pseudorandom number

Seed the random number generator

So, thinking back to HWG...

4/4/18 CS 220: Parallel Computing



Generating Random Numbers

srandom(my_rank + 1);
my_contrib = random() % MAX _CONTRIB;

= Here, we're seeding the random number generator
with our rank + 1

= The seed is used as the starting point for the random
number generation algorithm

= Use the same seed? Then the same random numbers
will be produced.

4/4/18 CS 220: Parallel Computing



Making it Really Random

4/4/18

So if we use the seed “1," we'll get the same random
numbers every time

Maybe we actually want the value to be truly random
— not something we could predict ahead of time

The common approach here is to use the current
timestamp to seed the random number generator

If you run the program, time has continued ticking on
and a new seed will be used every time

time() function

CS 220: Parallel Computing

10



Seeding with time()

4/4/18

Seeding the random number generator with timel)
doesn't actually work with MPI| programs though!
Why?

MPI launches your program multiple times in parallel

time() will return the same thing at all ranks

To solve this problem, we shift time ahead by the
rank number

Ensures we'll always get unique numbers each run!

CS 220: Parallel Computing 11



Today's Agenda

= QRA
= Random number generation

= Collective Communication

4/4/18 CS 220: Parallel Computing

12



Collective Communication

In HW6, we implemented a much more efficient
global sum

Rather than simply sending all values to a single rank
(process), we split the workload up

There are a few other types of collective
communication to cover...

4/4/18 CS 220: Parallel Computing

13



Basic All-to-One Sum

4/4/18 CS 220: Parallel Computing

14



Tree Sum

4/4/18

CS 220: Parallel Computing

15



Tree Broadcast

4/4/18 CS 220: Parallel Computing

16



MPI_Reduce

4/4/18

As we've seen with Project 2, we can use
MPI Reduce to have MPI do a tree sum for us

There's another, similar function: MPI_Allreduce
What's the difference?

Allreduce shares the result across all the ranks

Whereas reduce will just give one “root” rank the
answer

How is this communication pattern implemented?

CS 220: Parallel Computing 17



One Approach: Sum & Broadcast

OB OB OE

0 3 4 5

|
:
|
6

4/4/18 CS 220: Parallel Computing

18



Optimization: Butterfly

CS 220: Parallel Computing



