CS 220: Introduction to Parallel Computing

Beginning C

Lecture 2

Today's Schedule

= More C Background

= Differences: C vs Java/Python
= The C Compiler

= HWO

8/25/17 CS 220: Parallel Computing

Today's Schedule

= More C Background

= Differences: C vs Java/Python
= The C Compiler

= HWO

8/25/17 CS 220: Parallel Computing

Architectural Differences

C is a bit different than Java or Python

It is compiled to machine code
Java runs on a virtual machine (JVM)
Python is interpreted
(translated to machine code on the fly)

We can achieve better performance with C, but are
also given more responsibility

Memory management is up to us
(no automatic garbage collection)

8/25/17 CS 220: Parallel Computing

C Advantages

It is fairly simple: the language does not have a multitude
of features

Coming from Java, the syntax is familiar
In cases where we operate close to the hardware, it can

be much easier to implement than the equivalent
Java/Python/etc.

Wide use for systems programming

Want to contribute to the Linux kernel? It's written in C
(including the drivers)

Performance

8/25/17 CS 220: Parallel Computing 5

C Disadvantages

8/25/17

Much less functionality is available in the standard
library than other languages

Memory leaks
Segmentation faults (invalid memory access)

No objects

If you're used to object-oriented programming in Java
or Python, C will make you rethink your program flow

CS 220: Parallel Computing

Hello World in C

#include <stdio.h>

int main(void)

{
printf("Hello, World!\n");

return 0;

8/25/17 CS 220: Parallel Computing

Writing C Programs

Using an IDE (like Eclipse, Intellid, etc) is less
common in the C world

Many C developers prefer to use a text editor and a
terminal to write their programs

Text editor: edit, save

Terminal: compile, run

There's a tutorial on the course schedule page for
setting up your editor and C compiler

8/25/17 CS 220: Parallel Computing

Writing C Programs

o000 @] @ matthew@silicon — -zsh — 80x37
c librat H silicon:~/Desktop]$ gce -wWall -g calibrate.c
caliorate.c x calibrate.c:8:10: fatal error: '"linux/jiffies.h' file not found

. . #include <linux/jiffies.h>
ne DELAY_CALIBRATION_TICKS < 100) 7 1: /100 A

MAX_DIRECT_CALIBRATION_RETRIES 5 1 error generated.
ons silicon:~/Desktop]$ B

calibrate_delay_direct(

pre_start, start, post_start;

pre_end, end, post_end;

start_jiffies;

timer_rate_min, timer_rate_max;

good_timer_sum = 0;

good_timer_count = 0;

measured_times [MAX_DIRECT_CALIBRATION_RETRIES];
max = -1;
min = <1;
i;

(read_current_timer(&pre_start) < 0)
U H

Ln1,Col1 TabSize:4 UTF-8 LF C @

8/25/17 CS 220: Parallel Computing

Testing Your Code

8/25/17

Very Important: compile and test your code on the
department machines before turning it in

We can't grade it on your specific laptop

C compilers can implement the C specification
differently

The standards committee releases new specifications
periodically

In fact, in olden times, there were several different,
iIncompatible versions of C

CS 220: Parallel Computing

10

Windows

8/25/17

One last tip: developing C programs on Windows can
be tricky

What works on Windows may not work at all on the
department Linux machines

The course website has information for setting up a
Linux virtual machine on Windows

There are also other options available... use them at
your own risk!

CS 220: Parallel Computing 11

Today's Schedule

= More C Background

= Differences: C vs Java/Python
= The C Compiler

= HWO

8/25/17 CS 220: Parallel Computing

12

A Program in C — Spot the Differences

#include <stdio.h>
void say hello(int times);
int main(int argc, char *xargv[]) {

say_hello(6);
return 0;

}

/* Say Something %/
void say _hello(int times) {
int 1i;
for (1 = 1; 1 <= times; ++1) {
printf("Hello world! (#%d)\n", 1);
}

)

8/25/17 CS 220: Parallel Computing 13

Differences from Java/Python

Whitespace is mostly ignored

Semicolons are required
Comments: /**/and //
Including libraries looks a bit different
No public/private etc. access modifiers
Forward declarations (prototypes)

But, there are a lot of similarities...

8/25/17 CS 220: Parallel Computing

Similarities

= Arithmetic is mostly the same

= We use &&, | |, and =instead of and, or and not

= If, then, else
" Loops

= Switches

8/25/17 CS 220: Parallel Computing

15

Today's Schedule

= More C Background

= Differences: C vs Java/Python
= The C Compiler

= HWO

8/25/17 CS 220: Parallel Computing

16

Compilation

8/25/17

Something you may not be familiar with is compiling
your programs

Who has used javac and java from the command line?

...Who presses the "Run” button in Eclipse/IntelliJ?
With C, the compiler is very important

It takes your C code and transforms it into machine
code to produce a program binary

Runs natively on the hardware — no VM/interpreter

CS 220: Parallel Computing 17

Program Binaries

8/25/17

After you've compiled your program and produced
an executable binary, you can run it!

You can even copy your program to other similar
machines and it will run

Unlike Java/Python, you don't have to install anything
first

However, note “similar” above - the binaries are
platform- and architecture-specific

CS 220: Parallel Computing 18

Platform Differences

8/25/17

Your compiled C program will generally only run on
Its target architecture and platform

If you compiled on a Mac, then the binary won't work
on Linux

If you compile on an x86-based processor (Intel,
AMD), the binary won't work on ARM (Qualcomm,
Apple, Samsung mobile CPUs, Raspberry Pi...)

Java/Python don't have this limitation!

CS 220: Parallel Computing 19

Phases of C Compilation

1/24/18

Preprocessing: perform text substitution, include
files, and define macros. The first pass of
compilation.

Directives begin with a #

Translation: preprocessed code is converted to
machine language (also known as object code)

Linking: your code likely uses external routines (for
example, printf from stdio.h). In this phase, libraries
are added to your code

CS 220: Parallel Computing 20

The C Preprocessor

We've seen include statements:
#include <stdio.h>
Another common use case Is constants:

tdefine PI 3.14159

Note: no equals sign. This is just simple text
replacement!

You can also define macros that essentially cut and
paste reusable code snippets into your work

1/24/18 CS 220: Parallel Computing

21

Include Paths

There are two types of includes:

#include <blah>
#include “blah”

When angle brackets are used, the system-wide
library paths are searched

With quotes, you are specifying a local path (in the
same folder as your code)

In this class, you'll only need to worry about the
system libraries

1/24/18 CS 220: Parallel Computing

22

Compiling from the Command Line

= gcc my_code.c
./a.out
Produces and runs a binary file called ‘a.out’

= You can also turn on error messages:
gcc -Wall my_code.c

= And give your program a hame:
gcc -Wall my _code.c -0 my_prog

1/24/18 CS 220: Parallel Computing

23

Making Diagnostics Readable

The last command line option to gcc | recommend is
-fdiagnostics-color.

gcc -fdiagnostics-color -Wall my _code.c -0 out.exe

my_code.c:9:6: warning: conflicting types for ‘say_hello’
[enabled by default]

void say _hello(int times) {

A

first.c:5:5: previous implicit declaration of
‘say_hello’ was here

say_hello(6);
A

1/24/18 CS 220: Parallel Computing

24

Today's Schedule

= More C Background

= Differences: C vs Java/Python
= The C Compiler

= HWO

8/25/17 CS 220: Parallel Computing

25

Basic Input/Output

= Requires the standard I/O library:
= #include <stdio.h>

= Printing text:
= printf("hi there!\n");

= We can also print out variables with format strings

8/25/17 CS 220: Parallel Computing

26

Format Strings (1/2)

Let's look at a print example:
printf("<format>", varl, vare, .. , varN);
The variable list is optional:

printf("hello world!\n");
Note that we need to provide the newline character

This style of I/0 tells the C compiler what and where
you want to read or write

1/24/18 CS 220: Parallel Computing

27

Format Strings (2/2)

The C compiler looks through your format string to
determine the order to print and in what format:

printf("Hello %s, it is January %d.", "Alice", 24);

Hello Alice, it is January 24.
There are several format specifiers available:
%d or %I —integer
%s — string
%f — floating point

... And many more

1/24/18 CS 220: Parallel Computing 28

GitHub

If you haven't already, register for an account on
GitHub

Visit the course website for homework instructions
See: Assignments > Homework

The schedule page also has some information about
using git

8/25/17 CS 220: Parallel Computing

29

