
Lecture 20

CS 220: Introduction to Parallel Computing

Distributed Sorting

§ Sleep Sort
§ Bogosort
§ Bubble Sort
§ Odd/Even Transposition Sort

Today’s Agenda

4/6/18 CS 220: Parallel Computing 2

§ Sleep Sort
§ Bogosort
§ Bubble Sort
§ Odd/Even Transposition Sort

Today’s Agenda

4/6/18 CS 220: Parallel Computing 3

§ When we have lists of data, it’s very useful to be able
to sort them

§ In Python and Java, sorting is built in!
§ list.sort()
§ So nice!

§ But as you already guessed, in C we need to provide
our own sorting functions

Sorting

4/6/18 CS 220: Parallel Computing 4

§ Sorting algorithms can be costly; it takes time to sort
a really large list!

§ Splitting the data up across several cores can greatly
improve performance

§ Each process will sort its own version of the list, and
then we’ll need to merge everything back together

Complexity

4/6/18 CS 220: Parallel Computing 5

§ The easiest parallel sort to implement is called
sleep sort

§ It may be the laziest (and possibly the slowest)
sorting algorithm out there

§ Each process receives a number to sort
§ Then it goes to sleep
§ Sets an alarm for (number) seconds

§ Wakes up and prints its value!

My Favorite Algorithm: Sleep Sort

4/6/18 CS 220: Parallel Computing 6

§ Sleep Sort
§ Bogosort
§ Bubble Sort
§ Odd/Even Transposition Sort

Today’s Agenda

4/6/18 CS 220: Parallel Computing 7

§ The bogosort algorithm consists of:
§ Shuffling the elements
§ Determining whether they’re in order or not

§ Rinse & Repeat
§ Note: bogosort can benefit from parallelism, right?

§ Kind of in the same way as our password cracker…

Bogosort

4/6/18 CS 220: Parallel Computing 8

§ Sleep Sort
§ Bogosort
§ Bubble Sort
§ Odd/Even Transposition Sort

Today’s Agenda

4/6/18 CS 220: Parallel Computing 9

§ Bubble sort compares adjacent elements and then
swaps them if necessary

§ The bigger elements “bubble” to the top
§ After one pass of the algorithm, we know the last

element is sorted
§ Then continue on…

Bubble Sort

4/6/18 CS 220: Parallel Computing 10

Bubble Sort in Action

4/6/18 CS 220: Parallel Computing 11

Source: https://en.wikipedia.org/wiki/Bubble_sort

https://en.wikipedia.org/wiki/Bubble_sort

§ How can we parallelize the algorithm?

§ It’s not easy: we can’t do the swaps in parallel
because we need to wait for the previous step

§ A relative of the bubble sort, odd-even transposition
sort, can be parallelized though!

Parallelizing Bubble Sort

4/6/18 CS 220: Parallel Computing 12

§ Is bubble sort efficient?
§ Well, we could always ask Obama:

§ https://www.youtube.com/watch?v=k4RRi_ntQc8
§ (Thanks, Obama)

§ The bubble sort is definitely the wrong way to go:
§ So many swaps, so many iterations over the list

§ Worst-case performance: O(n2)

An Aside: Complexity

4/6/18 CS 220: Parallel Computing 13

https://www.youtube.com/watch?v=k4RRi_ntQc8

§ Sleep Sort
§ Bogosort
§ Bubble Sort
§ Odd/Even Transposition Sort

Today’s Agenda

4/6/18 CS 220: Parallel Computing 14

§ Consists of two phases: odd and even
§ In the even phases, each odd-subscripted element is

compared with its “left” neighbor
§ If they’re out of order, they’re swapped

§ In the odd phases, each odd-subscripted element is
compared with its “right” neighbor
§ If they’re out of order, they’re swapped

§ Repeat until sorted

Odd-Even Transposition Sort

4/6/18 CS 220: Parallel Computing 15

§ Suppose the list is:

[5, 9, 4, 3]
0 1 2 3 /* (subscripts) */

§ Even phase:
§ Compare (5, 9) and (4, 3)
§ 4 and 3 are out of order. Swap them!

An Example

4/6/18 CS 220: Parallel Computing 16

§ The list:
[5, 9, 3, 4]
0 1 2 3 /* (subscripts) */

§ Odd phase:
§ Compare (9, 3)

§ The list:
[5, 3, 9, 4]
0 1 2 3 /* (subscripts) */

An Example

4/6/18 CS 220: Parallel Computing 17

§ The list:
[5, 3, 9, 4]
0 1 2 3 /* (subscripts) */

§ Even phase:
§ Compare (5, 3) and (9, 4)
§ Both pairs are out of order. Swap them!

§ The list:
[3, 5, 4, 9]
0 1 2 3 /* (subscripts) */

An Example

4/6/18 CS 220: Parallel Computing 18

§ The list:
[3, 5, 4, 9]
0 1 2 3 /* (subscripts) */

§ Odd phase:
§ Compare (5, 4). Swap!

§ [3, 4, 5, 9]
0 1 2 3 /* (subscripts) */

An Example

4/6/18 CS 220: Parallel Computing 19

§ Distribute one element to each process

§ During each phase, send/receive between neighbors
§ We’ll use our MPI functions here

§ Compare and keep the appropriate element

§ How do we know when we’re done?
§ When no swaps occurred across both the odd and

even phases

Parallelizing It

4/6/18 CS 220: Parallel Computing 20

