CS 220: Introduction to Parallel Computing

Distributed Sorting

Lecture 20

Today's Agenda

= Sleep Sort
= Bogosort

= Bubble Sort
= Odd/Even Transposition Sort

4/6/18 CS 220: Parallel Computing

Today's Agenda

= Sleep Sort
= Bogosort

= Bubble Sort
= Odd/Even Transposition Sort

4/6/18 CS 220: Parallel Computing

Sorting

When we have lists of data, it's very useful to be able
to sort them

In Python and Java, sorting is built in!
list.sort()
So nice!

But as you already guessed, in C we need to provide
our own sorting functions

4/6/18 CS 220: Parallel Computing

Complexity

4/6/18

Sorting algorithms can be costly; it takes time to sort
a really large list!

Splitting the data up across several cores can greatly
Improve performance

Each process will sort its own version of the list, and
then we'll need to merge everything back together

CS 220: Parallel Computing

My Favorite Algorithm: Sleep Sort

The easiest parallel sort to implement is called
sleep sort

It may be the laziest (and possibly the slowest)
sorting algorithm out there

Each process receives a number to sort
Then it goes to sleep

Sets an alarm for (humber) seconds

Wakes up and prints its value!

4/6/18 CS 220: Parallel Computing

Today's Agenda

= Sleep Sort
= Bogosort

= Bubble Sort
= Odd/Even Transposition Sort

4/6/18 CS 220: Parallel Computing

Bogosort

The bogosort algorithm consists of:
Shuffling the elements
Determining whether they're in order or not

Rinse & Repeat

Note: bogosort can benefit from parallelism, right?

Kind of in the same way as our password cracker...

4/6/18 CS 220: Parallel Computing

Today's Agenda

= Sleep Sort
= Bogosort

= Bubble Sort
= Odd/Even Transposition Sort

4/6/18 CS 220: Parallel Computing

Bubble Sort

Bubble sort compares adjacent elements and then
swaps them if necessary

The bigger elements "bubble” to the top

After one pass of the algorithm, we know the last
element is sorted

Then continue on...

4/6/18 CS 220: Parallel Computing

10

Bubble Sort in Action

6 5 3 1 8 7 2 4

Source: https://en.wikipedia.org/wiki/Bubble sort

4/6/18 CS 220: Parallel Computing

11

https://en.wikipedia.org/wiki/Bubble_sort

Parallelizing Bubble Sort

4/6/18

How can we parallelize the algorithm?

It's not easy: we can't do the swaps in parallel
because we need to wait for the previous step

A relative of the bubble sort, odd-even transposition
sort, can be parallelized though!

CS 220: Parallel Computing

12

An Aside: Complexity

= |s bubble sort efficient?

= Well, we could always ask Obama:
= https://www.youtube.com/watch?v=k4RRi ntQc8

= (Thanks, Obama)

= The bubble sort is definitely the wrong way to go:

= S0 many swaps, so many iterations over the list

= Worst-case performance: O(n?)

4/6/18 CS 220: Parallel Computing

13

https://www.youtube.com/watch?v=k4RRi_ntQc8

Today's Agenda

= Sleep Sort
= Bogosort

= Bubble Sort

= Odd/Even Transposition Sort

4/6/18 CS 220: Parallel Computing

14

Odd-Even Transposition Sort

4/6/18

Consists of two phases: odd and even

In the even phases, each odd-subscripted element is
compared with its “left” neighbor

If they're out of order, they're swapped

In the odd phases, each odd-subscripted element is
compared with its “right” neighbor

If they're out of order, they're swapped

Repeat until sorted

CS 220: Parallel Computing

15

An Example

= Suppose thelistis:

[5, 9, 4, 3]
0 1 a 3 /% (subscripts) x/

= Even phase:
= Compare (5, 9) and (4, 3)

= 4 and 3 are out of order. Swap them!

4/6/18 CS 220: Parallel Computing 16

An Example

= The list:
[5 4 9 ’ 3 ’
0 1 °
* Odd phase:
= Compare (9, 3)
= The list:
[5 4 3 ’ 9 ’
0 1 °

4]
3 /% (subscripts) *x/

4]
3 /% (subscripts) *x/

4/6/18 CS 220: Parallel Computing

An Example

= The list:
[S, 3, 9, 4]
0 1 2 3 /% (subscripts) x/
= Even phase:
= Compare (5, 3)and (9, 4)
= Both pairs are out of order. Swap them!

= The list:
[3, oS, 4, 9]
0 1 ° 3 /* (subscripts) */

4/6/18 CS 220: Parallel Computing

18

An Example

3 /% (subscripts) *x/

= The list:
[3, 5, 4, 9]
0 1 °
= Odd phase:

= Compare (5, 4). Swap!

- [s, 4, 5, 9]

0 1 2

4/6/18

3 /% (subscripts) *x/

CS 220: Parallel Computing

19

Parallelizing It

Distribute one element to each process

During each phase, send/receive between neighbors

We'll use our MPI functions here
Compare and keep the appropriate element

How do we know when we're done?

When no swaps occurred across both the odd and
even phases

4/6/18 CS 220: Parallel Computing

20

