CS 220: Introduction to Parallel Computing

Introduction to pthreads

Lecture 25

Threads

4/16/18

In computing, a thread is the smallest schedulable
unit of execution

Your operating system has a scheduler that decides
when threads/processes will run

Threads are essentially lightweight processes

In MPI, we duplicated our processes and ran them all
at the same time (in parallel)

With pthreads, a single process manages multiple
threads

CS 220: Parallel Computing

Why Learn Threads?

4/16/18

Threads are the most important concept you will
learn in this class

In the past, you could get away with writing serial
programs

Today, we live in a world of asynchronous, multi-
threaded code

Crucial for building fast, efficient applications

CS 220: Parallel Computing

MPI: Photocopier

MPI| executes multiple
processes in parallel

When we specify -n 8, we'll
get 8 processes

MPI will also distribute
them across machines

Each process gets a unique
rank

Helps us divide workload

4/16/18 CS 220: Parallel Computing

Threads: 3D Printer

= Each thread can be
unique and do something
different
= Or you can make many

threads that all do the
same thing

= More flexible than MPI

= Also can be more difficult
to manage

* Note: | may be slightly overselling threads here...

4/16/18 CS 220: Parallel Computing

Posix Threads

4/16/18

pthreads is short for POSIX Threads
POSIX - Portable Operating System Interface

POSIX is an operating system standard that helps
ensure compatibility across systems

If your program conforms to the POSIX standard, then
it'll compile and run on any compliant OS

For instance, we can compile your C programs on
macOS, Linux, FreeBSD, Solaris, and more

CS 220: Parallel Computing

What are Threads?

Lightweight processes
Created by processes to do some subset of the work

Rather than passing messages, threads use
shared memory.

All the threads have access to internal variables,
whereas with MPI we had to explicitly send our state
information to another process

4/16/18 CS 220: Parallel Computing

Common Uses for Threads (1/2)

You may want your program to do two things at the
same time

For example, download a file in one thread and show
a progress bar and dialog with another

User interfaces are Often 11%o of apisite.chm Completed
multi-threaded

Saving:

Helps hide the fact that CPUs o Qb ot oo

Estimated time left: 1 min 7 sec (69.2 KB of 707 KB copied)

canonly doonethingatatime T e

[Close this dialog box when download completes

(iper (ipen Falder I | Cancel I

4/16/18 CS 220: Parallel Computing 8

Common Uses for Threads (2/2)

Games often have a main event loop and several sub
threads that handle:

Graphics rendering
Artificial Intelligence
Responding to player inputs
In a video encoder, you may split the video into

multiple regions and have each thread work on them
individually

4/16/18 CS 220: Parallel Computing

Stepping Back: Processes

Recall: a process is an instance of a program

Each process has:
Binary instructions, data, memory
File descriptors, permissions
Stack, heap, registers

Threads are very similar, but they share almost

everything with their parent process except for:

Stack
Registers

4/16/18 CS 220: Parallel Computing

10

Sharing Data

4/16/18

Since threads share the heap with their parent
process, we can share pointers to memory locations

A thread can read and write data set up by its parent
Process

Sharing these resources also means that it's faster to
create threads

No need to allocate a new heap, set up permissions,
etc.

CS 220: Parallel Computing 11

Other Types of Threads

4/16/18

pthreads is just one way to manage lightweight
execution contexts

Windows has its own threading model

Languages have other features: Go has goroutines
that abstract away some threading details

C#: async/await

Futures

Learning pthreads will help you understand how
these models work

CS 220: Parallel Computing

12

Getting Started with pthreads

= As usual, we have a new #include!

=#include <pthread.h>
= We also need to link against the pthreads library:

= gcc file.c -pthread

= Luckily, we don't need a special compiler wrapper to
use pthreads (like we did with MPI: mpicc)

4/16/18 CS 220: Parallel Computing

13

Creating a Thread

int pthread create(
pthread _t *thread,
const pthread attr_t xattr,
vold *(xstart _routine)(vold %),

vold *arg);

4/16/18 CS 220: Parallel Computing

14

Let's Demo This...

4/16/18 CS 220: Parallel Computing

15

Variable Access

4/16/18

num_threads, defined at the top of the source file, is
accessible by all the threads

This is a global variable

Variables defined within the thread's function are
private and only accessible by it

Remember: each thread gets its own stack

If we malloc a struct on the heap and passitto a
thread, can it access the struct?

CS 220: Parallel Computing

16

pthread t

What's pthread t, the type we used to create our
array of threads?

This is considered an opaque type, defined internally
by the library

It's often just an integer that uniquely identifies the
thread, but we can't rely on this

For example, we shouldn't print out a pthread t

4/16/18 CS 220: Parallel Computing 17

attr

The second parameter we pass in is the pthread
attributes

These can include the stack size, scheduling policies,
and more

For now we are fine with the defaults, so we pass in
NULL

4/16/18 CS 220: Parallel Computing

18

start routine

The most important part of pthread create is the
start routine

This function is called by the pthread library as the
starting point for your thread
Passed in as a function pointer
Pointers are back, whoo hoo!!l

Just like how they sound: they're a pointer to a specific
function

4/16/18 CS 220: Parallel Computing

19

arg

4/16/18

The last argument to pthread create is "arg”
This can be anything we want to pass to the thread

If we wanted to have MPI-style ranks, we can pass in
a rank here

If we were implementing P2 with pthreads, we'd want
to pass in the start and end points of our mining
thread

CS 220: Parallel Computing

20

pthread join

4/16/18

int pthread_join(pthread_t thread, void **value_ptr);

The pthread_join function waits for a pthread to finish
execution (by calling return)

The return value of the thread is stored in value_ptr

This lets our main thread wait for all its children to finish
up before moving on

Commonly used to coordinate shutting down the threads,
waiting for their results, and synchronizing our logic

CS 220: Parallel Computing

21

