CS 220: Introduction to Parallel Computing

Critical Sections

Lecture 23



Process Ordering

4/18/18

You may have noticed that when we print to the
terminal, the order changes for every run

True for both MPl and pthreads

This happens for a couple of reasons:

We have no control over the actual execution of
threads or processes
Controlled by the OS scheduler

The terminal only accepts one line at a time from a
process (this is why we don't get jumbled output)

CS 220: Parallel Computing



The Scheduler (1/2)

The simplest form of scheduling is “round robin”

Go around in a loop and give everybody a little time

In reality, operating systems generally use priority
queues and more advanced logic to choose how to
run our threads

Some threads may be a higher priority than others,
some may be waiting for I/0 to complete, etc...

4/18/18 CS 220: Parallel Computing



The Scheduler (2/2)

If your computer has multiple CPUs or multiple cores,
then the scheduler decides which cores run your
processes

If you launch 1000 threads, then the scheduler tries
to give them all a fair share of the CPU

Resource allocation
The main thing to remember: we don't have direct

control over how the scheduler chooses to run our
threads

4/18/18 CS 220: Parallel Computing



Global Variables

Let's take a look at what happens when multiple
threads access a global variable at the same time

Be very careful with globals!
For example: let's assume you write a program with
global variable i
Later, in a thread, you want to iterate through some
values and forget to declare a local i

4/18/18 CS 220: Parallel Computing



Race Condition

4/18/18

When multiple threads have access to a variable,
race conditions can occur

This happens when two threads “race” to read/write
a value in memory

The sequence of events is not controlled
Thread 1 wants to subtract 10 from variable A
Thread 2 wants to add 2 to variable A
Which happens first? What will be the outcome?

CS 220: Parallel Computing



Example

We have two threads, A and B

A and B both want to add 1 to a shared variable,
count

What are the different scenarios that can play out
here?

What happens if we don't call pthread_join on the
threads?

4/18/18 CS 220: Parallel Computing



Handling Race Conditions

In general, race conditions are not desirable!

Having your code do unpredictable things is almost
always bad

We want to have control on how events unfold

In other words, we wish to serialize some portions of
our programs

We can do this with critical sections

4/18/18 CS 220: Parallel Computing



Critical Section

A critical section is a block of code that is protected
from concurrent access

We set up a particular region of our code and then
only allow a single thread to access it at a time

How can we implement critical sections?

4/18/18 CS 220: Parallel Computing



Busy Waiting

One approach for creating critical sections in our
code is called busy waiting

Wait for your turn in a while loop

while (turn != my_thread_id) {
/* Walt .. */
¥

Once it's your turn, enter the critical section, do your
work, and then set "turn” to the next thread when

you're done

4/18/18 CS 220: Parallel Computing

10



Busy Waiting: Downsides

4/18/18

The problem with busy waiting is that the threads are
constantly checking for their turn

Your CPU will spike up to 100% usage as the thread
continues to check, and check, and check...

There isn't much of a speed improvement over a
serial program because so much wasted work is
taking placel

There has to be a better way...

CS 220: Parallel Computing 11



Mutex

4/18/18

In parallel programming a mutex ensures that only
one thread can enter a critical section at a time

Mutex: Mutual Exclusion

This lets you “lock” part of your code so that other
threads cannot access it

We don't have the concept of a mutex in MPLI... why
not?

CS 220: Parallel Computing 12



Using a Mutex

= To create a mutex, use:
= pthread _mutex_t mutex = PTHREAD MUTEX INITIALIZER;

= Note the type: pthread_mutex_t

= Now let's use the mutex to protect our code:

pthread_mutex_lock(&mutex);
shared_var = shared_var + 1;
pthread_mutex_unlock (&mutex);

4/18/18 CS 220: Parallel Computing

13



Notes

There are other ways to define a critical section

We'll be going through several parallelism primitives
over the next few class periods

Shared variables don't have to be globals

You can allocate memory and pass a pointer to your
threads

4/18/18 CS 220: Parallel Computing

14



Try it Out

4/18/18

Let's make sure you can run a basic pthreads
application

Create some threads and have them modify a global
variable all at once

Then protect access to the variable with a mutex

Question: are we benefitting from parallelism here?

CS 220: Parallel Computing 15



