CS 220: Introduction to Parallel Computing

Condition Variables

Lecture 24

Remember: Creating a Thread

int pthread create(
pthread _t *thread,
const pthread attr_t xattr,
vold *(xstart _routine)(vold %),

vold *arg);

4/20/18 CS 220: Parallel Computing

Passing Arguments to Threads

= pthread_create is very specific about what we can
passin
= In fact, we can only pass in a pointer

= We've been using (abusing?) this to pass in our
thread ID

= So how do we pass more than one argument to a
new thread?

= The answer: structs

4/20/18 CS 220: Parallel Computing

Arg Struct Example

struct thread _params {
char thread _name[30];
unsigned int thread _id;
unsigned long nonce;

}

struct thread params xtp =
malloc(sizeof(struct thread_params));

strcpy(tp->thread_name, "My Thread");
tp->thread_id = 10;

4/20/18 CS 220: Parallel Computing

Passing it In

struct thread params xtp =
malloc(sizeof(struct thread_params));

strcpy(tp->thread_name, "My Thread");
tp->thread_id = 10;

pthread _create(
&thread_handle,
NULL,
thread _func,

tp);

4/20/18 CS 220: Parallel Computing

Using the Struct

vold *thread_ func(void *xinput _ptr) {

struct thread_params *tp
= (struct thread_params *) input _ptr;

printf("Starting Thread: %s\n",

tp->thread _name);

/* Your code here.. x/

4/20/18 CS 220: Parallel Computing

Waiting for Changes (1/2)

4/20/18

We discussed how busy waiting is one way to
prevent access to a critical section

Unfortunately, busy waiting is very inefficient!
We have a better way: mutexes

What about when we want to wait for something to
happen before our thread does its work?

For example: | will wait until | receive a "go” message
before | process this file

CS 220: Parallel Computing

Waiting for Changes (2/2)

We can busy wait on a variable to change

Once the change happens, we know we can proceed
Once again, this is inefficient

Consider:
We have two threads, Aand B
Thread A preprocesses the input file

Thread B calculates the statistics
In this case, thread B needs to wait for A

4/20/18 CS 220: Parallel Computing

Condition Variables

To wait for something to happen, we can use

condition variables

Condition variables have two related functions:
wait — wait for the condition to become true

signal — inform the waiting thread that the condition
has changed

When a thread is waiting, it blocks

Just like how our MPI programs block when they are
waiting for a message to comein

4/20/18 CS 220: Parallel Computing

Blocking vs Waiting

The big difference between blocking and actively
waiting is efficiency

Rather than constantly checking, go to sleep and let
the operating system wake you up when something
happens

Are we there yet?

Are we there yet?
Are we there yet?

Are we there yet?

4/20/18 CS 220: Parallel Computing

10

Initializing Condition Variables

= |nitialization is just like a mutex:

pthread cond_t cond _variable =
PTHREAD COND_INITIALIZER;

= Note: to use a condition variable, you also need a
mutex

= Why? This protects the condition variable logic

4/20/18 CS 220: Parallel Computing

11

Using Condition Variables

Thread A:
pthread mutex_lock(&mutex);
while (!condition) {
/* Note: mutex 1s released here: */
pthread _cond wait(&cond, &mutex);

¥

/* Do the work we were waiting to do! */
pthread_mutex_unlock(&mutex);

Thread B:
pthread_mutex_lock(&mutex);

/* Do whatever thread A 1s waiting for us to do ...

/* Signal the other thread! */
pthread_cond_signal(&cond);
pthread_mutex_unlock (&mutex);

4/20/18 CS 220: Parallel Computing

*/

12

Producer-Consumer

4/20/18

We can use condition variables to implement
producer-consumer synchronization

Thread 1: Producer — creates the tasks

Thread 2: Consumer — waits for tasks and carries
them out

This is a widely-used paradigm!

Work queues

CS 220: Parallel Computing

13

Producer-Consumer: Example

Thread A: (Consumer)
pthread mutex_lock(&mutex);
while (!condition) {
/* Note: mutex 1s released here: */
pthread _cond wait(&cond, &mutex);

¥

/* Do the work we were waiting to do! */
pthread_mutex_unlock(&mutex);

Thread B: (Producer)
pthread mutex_lock(&mutex);

/* Do whatever thread A 1s waiting for us to do ...

/* Signal the other thread! */
pthread_cond_signal(&cond);
pthread_mutex_unlock (&mutex);

4/20/18 CS 220: Parallel Computing

*/

14

pthreads: What we've Learned

= How to create a thread
= Busy waiting

= Mutexes

= Critical sections

= Condition variables

4/20/18 CS 220: Parallel Computing

15

