
Lecture 25

CS 220: Introduction to Parallel Computing

Review: Mutexes, Condition Variables



§ Where you declare your mutex is very important
§ For example, what happens when each thread 

creates its own mutex?
§ This is basically like checking if you have the keys to 

your own house

§ In general, mutexes should be a shared resource
§ Declared globally

Mutex Declaration

4/23/18 CS 220: Parallel Computing 2



§ You can think of a mutex as a protector of a shared 
resource that only one thread can access at a time

§ It’s the gatekeeper for your protected resource
§ You’ll almost always have:

1. The mutex
2. The variable you’re protecting

Mutex: Mental Model

4/23/18 CS 220: Parallel Computing 3



§ Let’s say our shared resource is the whiteboard
§ Before you can write on the whiteboard, you have to 

ask the instructor first
§ The instructor will only allow one student to write on 

the board at a time 
§ …if you request to use the whiteboard while someone 

else is already using it, then the instructor makes you 
wait

Mutex: Mental Model

4/23/18 CS 220: Parallel Computing 4



§ Thus far, we’ve just locked or unlocked a mutex
§ What happens when we try to lock a mutex that is 

already locked by another thread?
§ We block!

§ In some cases, we want to determine whether we can 
lock the mutex, but move on if we cannot:
§ pthread_mutex_trylock(&mutex)
§ Even if the mutex is already locked by another thread, 

the function call returns immediately

Checking a Mutex

4/23/18 CS 220: Parallel Computing 5



§ Now, assume that I’ve divided the whiteboard up into 
four quadrants

§ I can now let four students have their own part of the 
whiteboard at a time

§ To protect the four quadrants, we could have four 
unique mutexes
§ This doesn’t scale very well… What happens when I 

buy another whiteboard or divide it up more?

Back to the Whiteboard Example

4/23/18 CS 220: Parallel Computing 6



§ One approach would be to keep a big array of 
mutexes, one for each part of the whiteboard

§ Do we really need all that complexity?
§ There is, however, a better way: condition variables

Array of Mutexes

4/23/18 CS 220: Parallel Computing 7



§ To wait for something to happen, we can use 
condition variables

§ Condition variables have two related functions:
§ wait – wait for the condition to become true
§ signal – inform the waiting thread that the condition 

has changed

§ When a thread is waiting, it blocks
§ Just like how our MPI programs block when they are 

waiting for a message to come in

Condition Variables

4/23/18 CS 220: Parallel Computing 8



§ Initialization is just like a mutex:

pthread_cond_t cond_variable = 
PTHREAD_COND_INITIALIZER;

§ Note: to use a condition variable, you also need a 
mutex
§ Why? This protects the condition variable logic

Initializing Condition Variables

4/23/18 CS 220: Parallel Computing 9



Thread A:
pthread_mutex_lock(&mutex); 
while (num_students_at_board >= 4) {

/* Note: mutex is released here: */
pthread_cond_wait(&cond, &mutex); 

}
/* Do the work we were waiting to do! */
pthread_mutex_unlock(&mutex); 

Thread B:
pthread_mutex_lock(&mutex); 
/* Do whatever thread A is waiting for us to do ... */
/* Signal the other thread! */
pthread_cond_signal(&cond); 
pthread_mutex_unlock(&mutex); 

Using Condition Variables

4/23/18 CS 220: Parallel Computing 10


