CS 220: Introduction to Parallel Computing

Review: Mutexes, Condition Variables

Lecture 25



Mutex Declaration

4/23/18

Where you declare your mutex is very important

For example, what happens when each thread
creates its own mutex?

This is basically like checking if you have the keys to
your own house

In general, mutexes should be a shared resource
Declared globally

CS 220: Parallel Computing



Mutex; Mental Model

You can think of a mutex as a protector of a shared
resource that only one thread can access at a time

It's the gatekeeper for your protected resource

You'll almost always have:

The mutex

The variable you're protecting

4/23/18 CS 220: Parallel Computing



Mutex; Mental Model

4/23/18

Let's say our shared resource is the whiteboard

Before you can write on the whiteboard, you have to
ask the instructor first

The instructor will only allow one student to write on
the board at a time

...if you request to use the whiteboard while someone
else is already using it, then the instructor makes you

wait

CS 220: Parallel Computing



Checking a Mutex

Thus far, we've just locked or unlocked a mutex

What happens when we try to lock a mutex that is
already locked by another thread?

We block!

In some cases, we want to determine whether we can
lock the mutex, but move on if we cannot:

pthread mutex_trylock(&mutex)

Even if the mutex is already locked by another thread,
the function call returns immediately

4/23/18 CS 220: Parallel Computing



Back to the Whiteboard Example

4/23/18

Now, assume that |'ve divided the whiteboard up into
four quadrants

| can now let four students have their own part of the
whiteboard at a time

To protect the four quadrants, we could have four
unique mutexes

This doesn't scale very well... What happens when |
buy another whiteboard or divide it up more?

CS 220: Parallel Computing



Array of Mutexes

One approach would be to keep a big array of
mutexes, one for each part of the whiteboard

Do we really need all that complexity?

There is, however, a better way: condition variables

4/23/18 CS 220: Parallel Computing



Condition Variables

To wait for something to happen, we can use

condition variables

Condition variables have two related functions:
wait — wait for the condition to become true

signal — inform the waiting thread that the condition
has changed

When a thread is waiting, it blocks

Just like how our MPI programs block when they are
waiting for a message to comein

4/23/18 CS 220: Parallel Computing



Initializing Condition Variables

= |nitialization is just like a mutex:

pthread cond_t cond _variable =
PTHREAD COND_INITIALIZER;

= Note: to use a condition variable, you also need a
mutex

= Why? This protects the condition variable logic

4/23/18 CS 220: Parallel Computing



Using Condition Variables

Thread A:
pthread mutex_lock(&mutex);
while (num_students_at_board >= 4) {
/* Note: mutex 1s released here: */
pthread _cond wait(&cond, &mutex);

¥

/* Do the work we were waiting to do! */
pthread_mutex_unlock(&mutex);

Thread B:
pthread_mutex_lock(&mutex);

/* Do whatever thread A 1s waiting for us to do ...

/* Signal the other thread! */
pthread_cond_signal(&cond);
pthread_mutex_unlock (&mutex);

4/23/18 CS 220: Parallel Computing

*/

10



