CS 220: Introduction to Parallel Computing

Proof-of-Work & Bitcoin

Lecture 19

Bitcoin: Mining for Heat

= https://gz.com/1117836/bitcoin-mining-heats-
homes-for-free-in-siberia/

4/25/18 CS 220: Parallel Computing

https://qz.com/1117836/bitcoin-mining-heats-homes-for-free-in-siberia/

Today's Agenda

= Proof-of-work
= Bitcoin

= Project 3 tips

4/25/18 CS 220: Parallel Computing

Today's Agenda

= Proof-of-work
= Bitcoin

= Project 3 tips

4/25/18 CS 220: Parallel Computing

Proof-of-Work

Proof-of-work (POW) systems help prevent DDoS
attacks and other types of spamming

Also useful in cryptocurrencies

Give up some of your time (or computational power)
to legitimize an action/object

4/25/18 CS 220: Parallel Computing

Shell Money

Sea shells were used for thousands of years as legal
tender
It takes time to collect shells, carve them, etc.

In some cases, the shells were woven into
fabric/leather

The currency itself reflected the time it took to be
made, and therefore determined its value

Different groups used different shells/designs

Only carry value because we say so

4/25/18 CS 220: Parallel Computing

CAPTCHA

4/25/18

Completely Automated Public Turing test to
tell Computers and Humans Apart

CAPTCHAs are basically proof-of-work systems for
humans

So in other words, POW is an annoying, time
consuming task for your computer to do just in the
interest of proving it's not spamming/DDoSing

Luckily computers don't get annoyed as easily as we
do...

CS 220: Parallel Computing

Pricing Functions

POW systems use pricing functions to give the
computer a workout

A pricing function f has the following requirements:
f is moderately easy to compute
f has a consistent computational cost
given x andy, itis easy to determine if y = f(x)

(Much easier than computing f(x))

Dwork C., Naor M. Pricing via Processing or Combatting Junk Mail.

4/25/18 CS 220: Parallel Computing 8

Hash Inversions (1/2)

A common pricing function is having the computer
perform hash inversions

What was the input that produced this hash code?

A hash function takes data of any size and maps it to
a fixed size:

“Hello world!" -
ed0/6287532e86365e841e92bfco0d8c

"Blah blah blah blah blah blah" =
cdbd4/e323da9f2fcl2dac4800a3/661f1

4/25/18 CS 220: Parallel Computing

Hash Inversions (2/2)

So, a hash inversion is trying to get a specific output
from the hash function

Hash inversions are tough to compute (assuming a
cryptographic hash function)

After all, they're designed to be one way functions

But any time we map an infinite set of inputs to a finite
set of numbers (hash space), this is feasible

4/25/18 CS 220: Parallel Computing 10

HashCash: Preventing Spam

4/25/18

The core technology behind BitCoin was developed
as an anti-spam technique

You'll spend some time performing hash inversions
to prove you're not a spammer

No big deal for us regular users, but spammers trying
to send billions of messages will be slowed down!

The result of your computation is included in an email
header and verified on the receiving end

CS 220: Parallel Computing 11

An Example (1/2)

Let's send an email and prove we're not a spammer.
Our mission is to find a hash with four leading zeros

Start out with what we want to send:
"Hello World!"

We also need to append a nonce

Number used only once
We increase this with each hash attempt
This will change our output hash each iteration

4/25/18 CS 220: Parallel Computing

12

An Example (2/2)

This approach allows us to eventually find our
matching hash, but has a weakness

We can precompute the hashes and re-use them later
We also need some type of identifier for this
particular transaction

Maybe a centralized service hands out transaction IDs

We could use the current time, as long as we can
assume clocks are reasonably synced up

4/25/18 CS 220: Parallel Computing 13

Pseudocode - Pricing Function

while True:
nonce = nonce + 1
string = message + str(nonce)

hash = shal(string)

1f prefix(hash) == '0000":
Send message with hash
break

4/25/18 CS 220: Parallel Computing

14

Pseudocode - Verification

1f shal(msg.payload) == msg.hash:

Valid.. Whew! That was tough!

(You could also verify the
transaction 1d or timestamp here)

4/25/18 CS 220: Parallel Computing

15

Varying the Difficulty

4/25/18

To change the difficulty, we'll just adjust the number
of zeros we want

Note: the difficulty won't increase linearly

Approaches:

Perform a bitwise comparison rather than string
(allows more precision)

Have the sender perform multiple inversions
(maybe message1 + another nonce)

CS 220: Parallel Computing

16

Why Hashcash Works

4/25/18

Even heavy email users only send a few hundred
emails per day

Spammers want to send millions/billions
This is going to cost a lot of CPU time

Additionally, sending an email with no header or an
incorrect header will incur steep penalties

Too many incorrect headers? Ban the IP

Best of all, we don't have to start paying for email

CS 220: Parallel Computing

17

Why it Doesn't Work (1/2)

Back in 1992 when Hashcash was invented, we didn't
have such a huge variety of computing hardware

Smartphones, tablets, refrigerators, etc.

This makes coming up with the right difficulty for the
challenge... difficult.

The power of computing hardware isn't distributed
uniformly across the Earth

Hash inversions are amenable to parallelism and
custom hardware

4/25/18 CS 220: Parallel Computing

18

Why it Doesn't Work (2/2)

Spammers could adopt similar hardware to that of
Bitcoin miners

GPUs, ASICs
Depends on cost vs. benefit
Related: cloud instances. Computing is so cheap!

Since email is decentralized, you can't force
everyone to use this new standard

Would actually be easier nowadays (get Google and
Microsoft on board, and you're just about done)

4/25/18 CS 220: Parallel Computing 19

Today's Agenda

= Proof-of-work
= Bitcoin

= Project 3 tips

4/25/18 CS 220: Parallel Computing

20

Bitcoin Value: Last Semester

Market Price (USD)

Average USD market price across major bitcoin exchanges.

Source: blockchain.info

5,000
4,500
4,000
3,500

3,000

usb

2,500

2,000

1,500

1,000

500

2009 2010 2011 2012 2013 2014 2015 2016 2017

4/25/18 CS 220: Parallel Computing 21

Bitcoin Value: Now

4/25/18

usb

22,000

20,000

18,000

16,000

14,000

12,000

10,000

8,000

6,000

4,000

2,000

2009

2010

2011

2012 2013 2014 2015

CS 220: Parallel Computing

2016

2017

2018

22

As of Now

= 1BTC=8911.89 USD

= Gone up $3000 since last semester!

= 215,980 transactions per day
= ~17m bitcoins in circulation

= See: http://blockchain.info

4/25/18 CS 220: Parallel Computing

23

http://blockchain.info/

Blockchain

The Bitcoin blockchain is a decentralized database
of Bitcoin transactions

Each block in the chain includes the hash of the
previous block

Starts with the genesis block

When a transaction occurs, it Is added to the current
block and will be verified by miners

4/25/18 CS 220: Parallel Computing

24

Blocks

A block is a list of transactions with some metadata
Magic number (4 bytes) = 0xD9B4BEF9

Block size (4 bytes)

Block header

Transaction counter

Transaction data

4/25/18 CS 220: Parallel Computing

25

Block Headers

Version

Hash of the previous block

This makes tampering with the chain difficult
Current hash of the transactions in the block
Timestamp (last update)

Difficulty

Nonce

4/25/18 CS 220: Parallel Computing

26

Mining Bitcoin

Bitcoin uses the Hashcash algorithm for a different

purpose: mining coins

"Mining” means verifying a block of transactions
Finding the nonce (aka solution)

Miners, who are the basis of transaction verification,

are paid in new bitcoins and transaction fees

The reward of new bitcoins is halved every 210,000
blocks (~4 years)

Monetary supply limited to 21m bitcoins

4/25/18 CS 220: Parallel Computing 27

Verification

4/25/18

In bitcoin, the difficulty of the challenge is varied to
keep the network chugging along

Once all 21m bitcoins are created, miners will be
rewarded for verification via transaction fees only

What is the cost vs. benefit of mining these coins?

Electricity vs. the size of the reward

Lots of companies now build power-efficient
hardware specifically for mining

CS 220: Parallel Computing 28

Pooled Mining

As difficulty goes up, the chances of a single miner
verifying a block goes down

To combat this, pools of miners formed

Pools divide up the work (honces) among
participants

Rewarded with a share of new bitcoins based on how
much work was done

Less wasted effort, but less reward

4/25/18 CS 220: Parallel Computing

29

"Moral” Issues

4/25/18

We are consuming massive amounts of fossil fuels to
produce fake money

Production is only hard because we make it so

Mining hardware gets bought up and then discarded
once we move to harder hash inversions

Some Useful Proof-of-Work systems try to do
beneficial work

Finding prime numbers (Primecoin)
Protein folding (Curecoin)

CS 220: Parallel Computing 30

Today's Agenda

= Proof-of-work
= Bitcoin

* Project 3 tips

4/25/18 CS 220: Parallel Computing

31

Project 3

4/25/18

In this assignment, we'll look at the mining aspect of
bitcoin

Given a block of data (in our case, just a string), we'll
find the nonce that satisfies a given difficulty

Number of zeros at the front of the hash string

We'll implement a parallel mining approach with the
producer-consumer paradigm

CS 220: Parallel Computing

32

Producer-Consumer

We'll distinguish between two types of threads in this
assignment:

Producer — main thread
Consumers — worker threads

The main thread generates tasks
Arrays of nonces to append to the block data & hash

Each array of tasks will be placed in a staging area (called
task _pointer)

The size of these arrays is something you will experiment with

The consumers pick up a task and perform the hash inversions,
checking the number of zeros at the start of the hash

4/25/18 CS 220: Parallel Computing 33

What You'll Implement

The mining function is given to you already, as well as
a working sha1 hash function

You will:

Implement variable difficulty (the user can specify
how many zeros they want to find)

Use condition variables instead of simply busy
waiting for tasks

When a solution is found, tell other threads to stop

Print out timing info / statistics

4/25/18 CS 220: Parallel Computing 34

Setting Specific Bits

= Let's say | asked you to set the 3" bit in a bit field
= How would you accomplish this?

= bit_field = bit_field | (Ox1 << 3)

4/25/18 CS 220: Parallel Computing

35

Setting Difficulty

= We can extend this approach to adjust the difficulty
of our bitcoin miner

= We'll just need to find out how many bits we need to
tosetto 1

= Then, loop until all the bits are set

4/25/18 CS 220: Parallel Computing

36

