
Lecture 19

CS 220: Introduction to Parallel Computing

Proof-of-Work & Bitcoin

§ https://qz.com/1117836/bitcoin-mining-heats-
homes-for-free-in-siberia/

Bitcoin: Mining for Heat

4/25/18 CS 220: Parallel Computing 2

https://qz.com/1117836/bitcoin-mining-heats-homes-for-free-in-siberia/

§ Proof-of-work
§ Bitcoin
§ Project 3 tips

Today’s Agenda

4/25/18 CS 220: Parallel Computing 3

§ Proof-of-work
§ Bitcoin
§ Project 3 tips

Today’s Agenda

4/25/18 CS 220: Parallel Computing 4

§ Proof-of-work (POW) systems help prevent DDoS
attacks and other types of spamming

§ Also useful in cryptocurrencies
§ Give up some of your time (or computational power)

to legitimize an action/object

Proof-of-Work

4/25/18 CS 220: Parallel Computing 5

§ Sea shells were used for thousands of years as legal
tender

§ It takes time to collect shells, carve them, etc.
§ In some cases, the shells were woven into

fabric/leather
§ The currency itself reflected the time it took to be

made, and therefore determined its value

§ Different groups used different shells/designs
§ Only carry value because we say so

Shell Money

4/25/18 CS 220: Parallel Computing 6

§ Completely Automated Public Turing test to
tell Computers and Humans Apart

§ CAPTCHAs are basically proof-of-work systems for
humans

§ So in other words, POW is an annoying, time
consuming task for your computer to do just in the
interest of proving it’s not spamming/DDoSing
§ Luckily computers don’t get annoyed as easily as we

do…

CAPTCHA

4/25/18 CS 220: Parallel Computing 7

§ POW systems use pricing functions to give the
computer a workout

§ A pricing function f has the following requirements:
§ f is moderately easy to compute
§ f has a consistent computational cost
§ given x and y, it is easy to determine if y = f(x)

§ (Much easier than computing f(x))

Pricing Functions

4/25/18 CS 220: Parallel Computing 8

Dwork C., Naor M. Pricing via Processing or Combatting Junk Mail.

§ A common pricing function is having the computer
perform hash inversions
§ What was the input that produced this hash code?

§ A hash function takes data of any size and maps it to
a fixed size:
§ “Hello world!” à
ed076287532e86365e841e92bfc50d8c

§ “Blah blah blah blah blah blah” à
cd647e323da9f2fc2dac4800a37661f1

Hash Inversions (1/2)

4/25/18 CS 220: Parallel Computing 9

§ So, a hash inversion is trying to get a specific output
from the hash function

§ Hash inversions are tough to compute (assuming a
cryptographic hash function)
§ After all, they’re designed to be one way functions
§ But any time we map an infinite set of inputs to a finite

set of numbers (hash space), this is feasible

Hash Inversions (2/2)

4/25/18 CS 220: Parallel Computing 10

§ The core technology behind BitCoin was developed
as an anti-spam technique

§ You’ll spend some time performing hash inversions
to prove you’re not a spammer
§ No big deal for us regular users, but spammers trying

to send billions of messages will be slowed down!

§ The result of your computation is included in an email
header and verified on the receiving end

HashCash: Preventing Spam

4/25/18 CS 220: Parallel Computing 11

§ Let’s send an email and prove we’re not a spammer.
Our mission is to find a hash with four leading zeros

§ Start out with what we want to send:
§ “Hello World!”

§ We also need to append a nonce
§ Number used only once
§ We increase this with each hash attempt
§ This will change our output hash each iteration

An Example (1/2)

4/25/18 CS 220: Parallel Computing 12

§ This approach allows us to eventually find our
matching hash, but has a weakness
§ We can precompute the hashes and re-use them later

§ We also need some type of identifier for this
particular transaction
§ Maybe a centralized service hands out transaction IDs
§ We could use the current time, as long as we can

assume clocks are reasonably synced up

An Example (2/2)

4/25/18 CS 220: Parallel Computing 13

while True:
nonce = nonce + 1
string = message + str(nonce)
hash = sha1(string)
if prefix(hash) == '0000':

Send message with hash
break

Pseudocode – Pricing Function

4/25/18 CS 220: Parallel Computing 14

if sha1(msg.payload) == msg.hash:
Valid… Whew! That was tough!
(You could also verify the
transaction id or timestamp here)

Pseudocode - Verification

4/25/18 CS 220: Parallel Computing 15

§ To change the difficulty, we’ll just adjust the number
of zeros we want

§ Note: the difficulty won’t increase linearly

§ Approaches:
§ Perform a bitwise comparison rather than string

(allows more precision)
§ Have the sender perform multiple inversions

(maybe message1 + another nonce)

Varying the Difficulty

4/25/18 CS 220: Parallel Computing 16

§ Even heavy email users only send a few hundred
emails per day

§ Spammers want to send millions/billions
§ This is going to cost a lot of CPU time

§ Additionally, sending an email with no header or an
incorrect header will incur steep penalties
§ Too many incorrect headers? Ban the IP

§ Best of all, we don’t have to start paying for email

Why Hashcash Works

4/25/18 CS 220: Parallel Computing 17

§ Back in 1992 when Hashcash was invented, we didn’t
have such a huge variety of computing hardware
§ Smartphones, tablets, refrigerators, etc.
§ This makes coming up with the right difficulty for the

challenge… difficult.

§ The power of computing hardware isn’t distributed
uniformly across the Earth

§ Hash inversions are amenable to parallelism and
custom hardware

Why it Doesn’t Work (1/2)

4/25/18 CS 220: Parallel Computing 18

§ Spammers could adopt similar hardware to that of
Bitcoin miners
§ GPUs, ASICs
§ Depends on cost vs. benefit
§ Related: cloud instances. Computing is so cheap!

§ Since email is decentralized, you can’t force
everyone to use this new standard
§ Would actually be easier nowadays (get Google and

Microsoft on board, and you’re just about done)

Why it Doesn’t Work (2/2)

4/25/18 CS 220: Parallel Computing 19

§ Proof-of-work
§ Bitcoin
§ Project 3 tips

Today’s Agenda

4/25/18 CS 220: Parallel Computing 20

Bitcoin Value: Last Semester

4/25/18 CS 220: Parallel Computing 21

Bitcoin Value: Now

4/25/18 CS 220: Parallel Computing 22

§ 1 BTC = 8911.89 USD
§ Gone up $3000 since last semester!

§ 215,980 transactions per day

§ ~17m bitcoins in circulation

§ See: http://blockchain.info

As of Now

4/25/18 CS 220: Parallel Computing 23

http://blockchain.info/

§ The Bitcoin blockchain is a decentralized database
of Bitcoin transactions

§ Each block in the chain includes the hash of the
previous block

§ Starts with the genesis block
§ When a transaction occurs, it is added to the current

block and will be verified by miners

Blockchain

4/25/18 CS 220: Parallel Computing 24

§ A block is a list of transactions with some metadata
§ Magic number (4 bytes) = 0xD9B4BEF9
§ Block size (4 bytes)
§ Block header
§ Transaction counter
§ Transaction data

Blocks

4/25/18 CS 220: Parallel Computing 25

§ Version

§ Hash of the previous block
§ This makes tampering with the chain difficult

§ Current hash of the transactions in the block

§ Timestamp (last update)

§ Difficulty

§ Nonce

Block Headers

4/25/18 CS 220: Parallel Computing 26

§ Bitcoin uses the Hashcash algorithm for a different
purpose: mining coins

§ ”Mining” means verifying a block of transactions
§ Finding the nonce (aka solution)

§ Miners, who are the basis of transaction verification,
are paid in new bitcoins and transaction fees
§ The reward of new bitcoins is halved every 210,000

blocks (~4 years)
§ Monetary supply limited to 21m bitcoins

Mining Bitcoin

4/25/18 CS 220: Parallel Computing 27

§ In bitcoin, the difficulty of the challenge is varied to
keep the network chugging along

§ Once all 21m bitcoins are created, miners will be
rewarded for verification via transaction fees only

§ What is the cost vs. benefit of mining these coins?
§ Electricity vs. the size of the reward

§ Lots of companies now build power-efficient
hardware specifically for mining

Verification

4/25/18 CS 220: Parallel Computing 28

§ As difficulty goes up, the chances of a single miner
verifying a block goes down

§ To combat this, pools of miners formed
§ Pools divide up the work (nonces) among

participants
§ Rewarded with a share of new bitcoins based on how

much work was done
§ Less wasted effort, but less reward

Pooled Mining

4/25/18 CS 220: Parallel Computing 29

§ We are consuming massive amounts of fossil fuels to
produce fake money
§ Production is only hard because we make it so

§ Mining hardware gets bought up and then discarded
once we move to harder hash inversions

§ Some Useful Proof-of-Work systems try to do
beneficial work
§ Finding prime numbers (Primecoin)
§ Protein folding (Curecoin)

“Moral” Issues

4/25/18 CS 220: Parallel Computing 30

§ Proof-of-work
§ Bitcoin
§ Project 3 tips

Today’s Agenda

4/25/18 CS 220: Parallel Computing 31

§ In this assignment, we’ll look at the mining aspect of
bitcoin

§ Given a block of data (in our case, just a string), we’ll
find the nonce that satisfies a given difficulty
§ Number of zeros at the front of the hash string

§ We’ll implement a parallel mining approach with the
producer-consumer paradigm

Project 3

4/25/18 CS 220: Parallel Computing 32

§ We’ll distinguish between two types of threads in this
assignment:
§ Producer – main thread
§ Consumers – worker threads

§ The main thread generates tasks
§ Arrays of nonces to append to the block data & hash
§ Each array of tasks will be placed in a staging area (called
task_pointer)

§ The size of these arrays is something you will experiment with

§ The consumers pick up a task and perform the hash inversions,
checking the number of zeros at the start of the hash

Producer-Consumer

4/25/18 CS 220: Parallel Computing 33

§ The mining function is given to you already, as well as
a working sha1 hash function

§ You will:
1. Implement variable difficulty (the user can specify

how many zeros they want to find)
2. Use condition variables instead of simply busy

waiting for tasks
3. When a solution is found, tell other threads to stop
4. Print out timing info / statistics

What You’ll Implement

4/25/18 CS 220: Parallel Computing 34

§ Let’s say I asked you to set the 3rd bit in a bit field

§ How would you accomplish this?

§ bit_field = bit_field | (0x1 << 3)

Setting Specific Bits

4/25/18 CS 220: Parallel Computing 35

§ We can extend this approach to adjust the difficulty
of our bitcoin miner

§ We’ll just need to find out how many bits we need to
to set to 1

§ Then, loop until all the bits are set

Setting Difficulty

4/25/18 CS 220: Parallel Computing 36

