CS 220: Introduction to Parallel Computing

Dining Philosophers, Semaphores

Lecture 27



Today's Schedule

= Dining Philosophers
= Semaphores
= Barriers

= Thread Safety

4/30/18 CS 220: Parallel Computing



Today's Schedule

= Dining Philosophers
= Semaphores
= Barriers

= Thread Safety

4/30/18 CS 220: Parallel Computing



Dining Philosophers Problem

= Five silent philosophers sit around a table

= Each philosopher has two functions:
= Think
= Eat

= Five bowls of rice and five chopsticks are placed
around the table

= A philosopher must have two chopsticks to begin
eating

4/30/18 CS 220: Parallel Computing



Dining Philosophers: Algorithm

= Think until left chopstick is available
* Pick itup

= Think until right chopstick is available
* Pickitup

= Eat until full
= Put the forks down

= Repeat

4/30/18 CS 220: Parallel Computing



Pitfalls: Deadlock

= What will happen if all the philosophers pick up the
chopstick on the left at the same time?

= Everyone will have one chopstick

= Everyone will wait

= Deadlock

4/30/18 CS 220: Parallel Computing



How Likely is Deadlock?

= In this situation, deadlock might not happen right
away

= The philosophers will eat and think for eternity
= |It's their job!!

= Eventually, deadlock will happen

4/30/18 CS 220: Parallel Computing



Problem 2: Starvation

4/30/18

Let's assume the system won't deadlock. We still
have another problem!

Two (or three) of the philosophers might be a bit
quicker than the others

Always get the chopsticks first

The other philosophers wait, wait, and wait

Never get a chance to eat

This demonstrates resource starvation

CS 220: Parallel Computing



Livelock

4/30/18

Let's assume that we only let a philosopher hold onto a
single chopstick for 1 minute

After the minute elapses, they have to put it back down
This will solve the problem, right?

Not necessarily: it is possible that all the philosophers put
down the chopstick at the same time, and then pick them
back up the same time

Livelock: the system keeps moving but makes no
progress

CS 220: Parallel Computing



One Solution: A Waiter

If we can introduce a third party arbitrator (Waiter),
then we can make sure the philosophers stay alive
and get their thinking done

How is this implemented in code?

Mutex

To pick up a chopstick, you have to ask the waiter for
permission

You can put down a chopstick at any time

4/30/18 CS 220: Parallel Computing

10



Today's Schedule

= Dining Philosophers
= Semaphores
= Barriers

= Thread Safety

4/30/18 CS 220: Parallel Computing

11



Semaphores (1/2)

4/30/18

We discussed using condition variables to protect a
shared, limited resource

Such as whiteboards

In our setup, we needed to maintain a mutex, a
condition variable, and a counter (humber of
students at the board)

There is a higher-level abstraction for handling this
situation: semaphores

CS 220: Parallel Computing 12



Semaphores (2/2)

= Counting semaphores include the counter logic

= Two functions:
= P—-proberen - “to test”

= V —vrijgave - “release”

* Invented by Edsger Dijkstra, a Dutch computer
scientist

4/30/18 CS 220: Parallel Computing

13



pthread semaphores

= In pthreads, we have these functions:
= sem_wait
= sem_post

= |nitialize with sem_init:

= 1int sem_1nit(
sem_t *sem, 1int pshared, unsigned 1int value);

4/30/18 CS 220: Parallel Computing

14



Breaking it Down: Functions

= P(s):
=g=5-1
= if (s <0), wait

= V(s):

=s=s+1

= Notify waiting threads

4/30/18 CS 220: Parallel Computing

15



Today's Schedule

= Dining Philosophers
= Semaphores
= Barriers

= Thread Safety

4/30/18 CS 220: Parallel Computing

16



Barriers

4/30/18

MPI lets us ensure all ranks call a particular function
before moving on: barrier

As you'd expect, pthreads also have barriers

pthread _barrier_init(

pthread_barrier_t *bar_p, N unsigned count);
pthread_barrier_walit(pthread_barrier_t *bar_p);
pthread _barrier_destroy(pthread_barrier_t xbar_p);

CS 220: Parallel Computing 17



However...

Not all implementations of pthreads support barriers
In particular, macOS does not include them

We can simulate a barrier using a condition variable
Each thread increments a shared counter, then walits

Once the counter reaches the number of threads, we
can tell them all, “"go!”

pthread _cond _broadcast
No need to maintain a list of threads: just broadcast!

4/30/18 CS 220: Parallel Computing 18



Today's Schedule

= Dining Philosophers
= Semaphores
= Barriers

= Thread Safety

4/30/18 CS 220: Parallel Computing

19



Thread Safety

= You may remember earlier in the semster when |
mentioned strktok is not thread safe

= Let's think back to how strtok works:

char *xtoken = strtok(line, ", \n");
while (token != NULL) {
/* do something with token */
/* then grab the next token: x/
token = strtok(NULL, ", \n");

4/30/18 CS 220: Parallel Computing

20



Threads and Strtok

The second time we call strtok, we pass in NULL

The function knows to reuse the string we passed in
earlier

How does it remember?
A global variable within the C library

And we all know what happens when a global variable
gets accessed by multiple threads...

Pandemonium! Well, sort of...

4/30/18 CS 220: Parallel Computing

21



Strtok Race Condition

If multiple threads are calling strtok at the same time,
they may:

Erase the string being tokenized and replace it with
another

Grab the next token before the other thread can
This leads to unpredictable behavior and lost data

Therefore, strtok is said to be not thread safe

4/30/18 CS 220: Parallel Computing 22



Thread Safety

4/30/18

Why not just make everything thread safe?

As we've seen, there iIs some overhead associated
with using synchronization primitives
Mutexes

Condition Variables

Sometimes adding this overhead to serial
applications is unacceptable

Let's see what this overhead looks like...

CS 220: Parallel Computing

23



Checking For Thread Safety

You'll see functions in C, Java, and many other
languages that are not thread safe

This is generally noted in the documentation
Java does a great job of highlighting which classes are
thread safe

We can also enforce thread safety ourselves:

Create a mutex

Make any thread that wishes to call strtok acquire the
mutex first

4/30/18 CS 220: Parallel Computing

24



