
Lecture 27

CS 220: Introduction to Parallel Computing

Dining Philosophers, Semaphores



§ Dining Philosophers
§ Semaphores
§ Barriers
§ Thread Safety

Today’s Schedule

4/30/18 CS 220: Parallel Computing 2



§ Dining Philosophers
§ Semaphores
§ Barriers
§ Thread Safety

Today’s Schedule

4/30/18 CS 220: Parallel Computing 3



§ Five silent philosophers sit around a table
§ Each philosopher has two functions:

§ Think
§ Eat

§ Five bowls of rice and five chopsticks are placed 
around the table
§ A philosopher must have two chopsticks to begin 

eating

Dining Philosophers Problem

4/30/18 CS 220: Parallel Computing 4



§ Think until left chopstick is available
§ Pick it up

§ Think until right chopstick is available
§ Pick it up

§ Eat until full
§ Put the forks down
§ Repeat

Dining Philosophers: Algorithm

4/30/18 CS 220: Parallel Computing 5



§ What will happen if all the philosophers pick up the 
chopstick on the left at the same time?
§ Everyone will have one chopstick
§ Everyone will wait

§ Deadlock

Pitfalls: Deadlock

4/30/18 CS 220: Parallel Computing 6



§ In this situation, deadlock might not happen right 
away

§ The philosophers will eat and think for eternity
§ It’s their job!!

§ Eventually, deadlock will happen

How Likely is Deadlock?

4/30/18 CS 220: Parallel Computing 7



§ Let’s assume the system won’t deadlock. We still 
have another problem!

§ Two (or three) of the philosophers might be a bit 
quicker than the others
§ Always get the chopsticks first

§ The other philosophers wait, wait, and wait
§ Never get a chance to eat

§ This demonstrates resource starvation

Problem 2: Starvation

4/30/18 CS 220: Parallel Computing 8



§ Let’s assume that we only let a philosopher hold onto a 
single chopstick for 1 minute
§ After the minute elapses, they have to put it back down

§ This will solve the problem, right?

§ Not necessarily: it is possible that all the philosophers put 
down the chopstick at the same time, and then pick them 
back up the same time

§ Livelock: the system keeps moving but makes no 
progress

Livelock

4/30/18 CS 220: Parallel Computing 9



§ If we can introduce a third party arbitrator (Waiter), 
then we can make sure the philosophers stay alive 
and get their thinking done

§ How is this implemented in code?
§ Mutex

§ To pick up a chopstick, you have to ask the waiter for 
permission

§ You can put down a chopstick at any time

One Solution: A Waiter

4/30/18 CS 220: Parallel Computing 10



§ Dining Philosophers
§ Semaphores
§ Barriers
§ Thread Safety

Today’s Schedule

4/30/18 CS 220: Parallel Computing 11



§ We discussed using condition variables to protect a 
shared, limited resource
§ Such as whiteboards

§ In our setup, we needed to maintain a mutex, a 
condition variable, and a counter (number of 
students at the board)

§ There is a higher-level abstraction for handling this 
situation: semaphores

Semaphores (1/2)

4/30/18 CS 220: Parallel Computing 12



§ Counting semaphores include the counter logic
§ Two functions:

§ P – proberen – “to test”
§ V – vrijgave – “release”

§ Invented by Edsger Dijkstra, a Dutch computer 
scientist

Semaphores (2/2)

4/30/18 CS 220: Parallel Computing 13



§ In pthreads, we have these functions:
§ sem_wait
§ sem_post

§ Initialize with sem_init:
§ int sem_init(

sem_t *sem, int pshared, unsigned int value);

pthread semaphores

4/30/18 CS 220: Parallel Computing 14



§ P(s):
§ s = s – 1
§ if (s < 0) , wait

§ V(s):
§ s = s + 1
§ Notify waiting threads

Breaking it Down: Functions

4/30/18 CS 220: Parallel Computing 15



§ Dining Philosophers
§ Semaphores
§ Barriers
§ Thread Safety

Today’s Schedule

4/30/18 CS 220: Parallel Computing 16



§ MPI lets us ensure all ranks call a particular function 
before moving on: barrier

§ As you’d expect, pthreads also have barriers
pthread_barrier_init(

pthread_barrier_t *bar_p, N unsigned count); 
pthread_barrier_wait(pthread_barrier_t *bar_p); 
pthread_barrier_destroy(pthread_barrier_t *bar_p);

Barriers

4/30/18 CS 220: Parallel Computing 17



§ Not all implementations of pthreads support barriers

§ In particular, macOS does not include them

§ We can simulate a barrier using a condition variable

§ Each thread increments a shared counter, then waits

§ Once the counter reaches the number of threads, we 
can tell them all, “go!”
§ pthread_cond_broadcast

§ No need to maintain a list of threads: just broadcast!

However…

4/30/18 CS 220: Parallel Computing 18



§ Dining Philosophers
§ Semaphores
§ Barriers
§ Thread Safety

Today’s Schedule

4/30/18 CS 220: Parallel Computing 19



§ You may remember earlier in the semster when I 
mentioned strktok is not thread safe

§ Let’s think back to how strtok works:

char *token = strtok(line, ", \n");
while (token != NULL) {

/* do something with token */
/* then grab the next token: */
token = strtok(NULL, ", \n");

}

Thread Safety

4/30/18 CS 220: Parallel Computing 20



§ The second time we call strtok, we pass in NULL

§ The function knows to reuse the string we passed in 
earlier

§ How does it remember?
§ A global variable within the C library

§ And we all know what happens when a global variable 
gets accessed by multiple threads…
§ Pandemonium! Well, sort of…

Threads and Strtok

4/30/18 CS 220: Parallel Computing 21



§ If multiple threads are calling strtok at the same time, 
they may:
§ Erase the string being tokenized and replace it with 

another
§ Grab the next token before the other thread can

§ This leads to unpredictable behavior and lost data
§ Therefore, strtok is said to be not thread safe

Strtok Race Condition

4/30/18 CS 220: Parallel Computing 22



§ Why not just make everything thread safe?
§ As we’ve seen, there is some overhead associated 

with using synchronization primitives
§ Mutexes
§ Condition Variables

§ Sometimes adding this overhead to serial 
applications is unacceptable
§ Let’s see what this overhead looks like…

Thread Safety

4/30/18 CS 220: Parallel Computing 23



§ You’ll see functions in C, Java, and many other 
languages that are not thread safe

§ This is generally noted in the documentation
§ Java does a great job of highlighting which classes are 

thread safe

§ We can also enforce thread safety ourselves:
§ Create a mutex
§ Make any thread that wishes to call strtok acquire the 

mutex first

Checking For Thread Safety

4/30/18 CS 220: Parallel Computing 24


