CS 220: Introduction to Parallel Computing

Introduction to CUDA

Lecture 28

Today's Schedule

= Project 4
= Read-Write Locks
= Introduction to CUDA

5/2/18 CS 220: Parallel Computing

Today's Schedule

* Project 4
= Read-Write Locks
= Introduction to CUDA

5/2/18 CS 220: Parallel Computing

Project 4

= The official spec is posted now
= Extra credit

= Have some fun with it!

= (if you have time)

5/2/18 CS 220: Parallel Computing

Today's Schedule

= Project 4
= Read-Write Locks
= Introduction to CUDA

5/2/18 CS 220: Parallel Computing

Atomicity

Our concurrency primitives allow us to ensure
mutual exclusion in our programs

Most common: mutex

Mutual exclusion helps us prevent race conditions

Only one thread is in a critical section at a time

Our goal here is atomicity: making the operations in
the critical section appear to be instantaneous

5/2/18 CS 220: Parallel Computing 6

Atomicity - Critical Sections

5/2/18

When one thread enters a critical section protected
by a mutex, other threads have to wait

While this is happening, the thread can carry out
several operations

For example: we want to increment three counters

Once the mutex is unlocked, it appears to other
threads that all 3 increments happened
simultaneously

This is an atomic operation

CS 220: Parallel Computing

Linearizability

Atomic operations linearize certain events

(make them occur in a particular order)

This is important in multithreaded environments: we
don't control when threads are scheduled

Related concept: atomicity in database systems

When performing a transaction, it should appear to
happen all at the same time —atomically — even
though multiple operations are taking place

Increment bank account, calculate interest, add interest

5/2/18 CS 220: Parallel Computing 8

Read-Write Locks

= The last pthreads concept we will learn is read-write
locks:

int pthread_rwlock_rdlock(pthread_rwlock_t* rwlock_p);
int pthread_rwlock_wrlock(pthread_rwlock_t* rwlock_p);

int pthread_rwlock_unlock(pthread_rwlock_t* rwlock_p);

= What are read-write locks, and why do we need
them?

5/2/18 CS 220: Parallel Computing

Parallel Linked List

Let's imagine we're implementing a linked list
(sounds familiar, right?)

insert

delete

search

If we allow concurrent modifications to the list, we
could end up with big problems!

Insert/delete are not thread safe

5/2/18 CS 220: Parallel Computing

10

List Deletes: Not Atomic

= Suppose Thread O is executing search and it has
loaded the address of the next node

“curr_p = curr_p->next_p;

= Thread 1 races ahead and deletes the next node
from the list

= Boom!

5/2/18 CS 220: Parallel Computing

11

Inserts: Also not Atomic!

5/2/18

Two threads simultaneously execute search and
iInsert

Thread O is executing search and it has loaded the
address of the next node

Thread 1 now inserts a new node after the node
Thread O is referencing, and the new node has the
desired value.

Thread O will “jump” over the new node and report
that the value it's searching for is not in the list.

CS 220: Parallel Computing 12

How do we solve this problem?

= One approach: protect the linked list with a mutex
= What are the downsides?

= Maybe that is too broad. Could we use a mutex for
each list item instead?

5/2/18 CS 220: Parallel Computing

13

Mutex Per List Node

= Any time the node is accessed, the mutex must first
be locked:

if (curr_p->next !'= NULL) {
pthread_mutex_lock(curr_p->next->mutex) ;
pthread_mutex_unlock(curr_p->mutex) ;
curr = curr_p->next;
/* do stuff */

} else { /* We’ve reached the end of the list */
pthread_mutex_unlock(curr_p->mutex) ;

}

5/2/18 CS 220: Parallel Computing 14

Mutex Per Node: Downsides (1)

5/2/18

Note: it is important to acquire the lock on the next
node before relinquishing the lock on the current

This prevents a thread from racing ahead and
changing the pointer in the current node

If the use of our program involves many searches,
but relatively few insertions and deletions, locking
and unlocking the nodes will be expensive

CS 220: Parallel Computing 15

Mutex Per Node: Downsides (2)

5/2/18

Another issue: list size

If the list is long — thousands or millions of nodes —
then we'll vastly increase the cost of traversing the
list: adding two function calls for each node!

And one of the calls can block the thread indefinitely!

There has to be a better way!

(What we all say constantly when writing C programs)

CS 220: Parallel Computing 16

Read-Write Locks

5/2/18

A lock that gives multiple “readers” simultaneous
access to the list, but only one "“writer” can access
the list at a time

The basic idea is that we want an object similar to a
mutex controlling access to the list

However, instead of a single lock function, we'll have
two lock functions...

CS 220: Parallel Computing 17

Linked List with R-W locks

First function: lock the list for reading

Any thread that wants to only read the list can
proceed

Second function: lock the list for writing

Waits until all reads are done, gains exclusive access
to the list, and performs the write

This is just like a normal mutex

5/2/18 CS 220: Parallel Computing

18

Benchmarking Threaded LL

1 Thread 2 Threads 3 Threads 4 Threads

Read-Write Locks 2.48 4.97 4.69 4.71
One Mutex 2.50 5.12 5.04 5.11
Mutex Per Node 12.00 29.60 17.00 12.00

1000 initial entries, 100,000 total list operations:
80% search, 10% insert, 10% delete

5/2/18 CS 220: Parallel Computing 19

Today's Schedule

= Project 4
= Read-Write Locks
= Introduction to CUDA

5/2/18 CS 220: Parallel Computing

20

Graphics Processing Units

5/2/18

In the old days, video cards were simple devices
Rendering was done on the CPU

Unfortunately, this is extremely slow

Imagine a low resolution computer screen: 800x600
pixels

To render one frame, we have to iterate through all the
pixels and update them MANY times per second

GPUs were created for this specific type of task

CS 220: Parallel Computing 21

Rendering a Frame

To iterate through a rectangle, we need two for loops

For (width of the display) {

For (height of the display) {
Update pixel i, j

}
On a 800x600 screen, this is 480,000 pixels

Wouldn't it be better to have 480,000 cores that only
needed to do one thing?

5/2/18 CS 220: Parallel Computing

22

GPUs vs CPUs

= Naturally, these differences lead to changes in how
we think about implementing our programs

= Nvidia has a nice (but simplistic) video from the folks
at Mythbusters that “compares” the two:

= https://www.youtube.com/watch?v=-P28LKWTzrl

5/2/18 CS 220: Parallel Computing

23

https://www.youtube.com/watch?v=-P28LKWTzrI

Enlightening YouTube Comments

@ neoqueto 3 years ago (edited)
29x38 resolution, color depth of 7 colors, such a remarkable milestone in computer graphics, NVIDIA!!!
REPLY 350 0 #!

View all 5 replies v

Ap4) Seunghwa Song 2 years ago
-~
For GPU, It takes more time to press the button though.

REPLY 177 s ®

View all 2 replies v

5/2/18 CS 220: Parallel Computing

24

General Purpose GPU Programming

Originally, GPUs were designed for a specific task:
graphics

(surprisel)
With games pushing the envelope, GPUs became
real powerhouses

Even literally: these things can consume major energy

and put out lots of heat!

In the early 2000s, we began to see General Purpose
Computing on Graphics Processing Units (GPGPU)

5/2/18 CS 220: Parallel Computing

25

Programming GPUs

5/2/18

In the early days of GPGPU, programming was
difficult

Programmers often had to “trick” graphics APIs to do
the work they wanted

Direct3D

OpenGL

These APIs are designed specifically for graphics.
Trying to bend them towards general computations
was quite difficult

CS 220: Parallel Computing 26

GPU Programming APlIs

5/2/18

Eventually, GPGPU became so popular that the
graphics card manufacturers began to support it

Nvidia: CUDA
ATl (how AMD): Stream

Apple/industry Group: OpenCL
Now AMD supports OpenCL as well

CS 220: Parallel Computing

27

CUDA

5/2/18

CUDA is the most popular API, and Nvidia currently
has a strong lead in scientific GPGPU applications
and machine learning

However, it's worth noting that many of today’s Bitcoin
miners use AMD hardware with OpenCL miner apps

Originally CUDA stood for Compute Unified Device
Architecture

Now it's just... CUDA

CS 220: Parallel Computing

28

Terminology

5/2/18

GPUs are much less standardized than CPUs

In this class, we'll be using Nvidia's terminology for
GPU concepts

In general, OpenCL et al have similar constructs
Nvidia GPUs consist of one or more “streaming
multiprocessors” (SM or SMXs)

Each SM has 8 or more cores and a control unit

CS 220: Parallel Computing 29

Department Hardware

5/2/18

Most of the machines in the department have CUDA
capable GPUs and the software installed

As discussed before, we'll be using the jet machines

Once again, we'll need to use a slightly different
compiler to build our programs

Running them works as usual, though!

CS 220: Parallel Computing

30

Jet Hardware

= 192 CUDA Cores
= 1889 MBytes memory (shared with system)
= GPU Clock rate: 852 MHz

= Max threads per multiprocessor: 2048

5/2/18 CS 220: Parallel Computing

31

CUDA + MPI

5/2/18

You can use CUDA with MPI

There is even an API that shares both system
memory and GPU memory across systems

We won't be doing this, though

One thing at a time is good enough ©

CS 220: Parallel Computing

32

