CS 220: Introduction to Parallel Computing

CUDA

Lecture 29

Today's Schedule

= GPUs vs CPUs
= More Terminology
= Getting Started Lab

= Last 15 minutes:
Please fill out teaching effectiveness surveys
(you should've been emailed a link)

5/7/18 CS 220: Parallel Computing

Today's Schedule

= GPUs vs CPUs
= More Terminology
= Getting Started Lab

= Last 15 minutes:
Please fill out teaching effectiveness surveys
(you should've been emailed a link)

5/7/18 CS 220: Parallel Computing

GPUs vs CPUs

5/7/18

We discussed the differences between GPUs and
CPUs last class

CPU = single paintball gun
GPU = lots of paintball guns?!

To be more fair: the CPU offers us a lot more
flexibility, but fewer cores

Naturally, these differences lead to changes in how
we think about implementing our programs

CS 220: Parallel Computing

GPUs vs CPUs

So we need to think about our problems in a different
way...

MPI is similar: many times we might think “we need to
do thisin aloop”

...but we actually don't always need loops, since all the
processes will execute the same thing

5/7/18 CS 220: Parallel Computing

Today's Schedule

GPUs vs CPUs
More Terminology
Getting Started Lab

Last 15 minutes:
Please fill out teaching effectiveness surveys
(you should've been emailed a link)

5/7/18 CS 220: Parallel Computing

The Kernel

When your CUDA program starts, it executes the
main() function on the host

Runs on the CPU and uses main memory

The host is responsible for launching the kernel

Runs on the GPU and uses GPU memory

Kernels are launched with this syntax:

kernel_name<<<grid_size, block_size>>>(params);
“Triple chevron” syntax <<<>>>

5/7/18 CS 220: Parallel Computing

Grids and Blocks

= A grid is a collection of blocks
= A block is a collection of threads

= Total number of threads?
grid_size * block_size

= Note: the blocks can also be 2D and 3D:
<<<grid_sz, X, Y, Z>>>

5/7/18 CS 220: Parallel Computing 8

Why it Matters

5/7/18

Grids, blocks, and threads closely follow the
hardware and logical design of GPUs

Each block gets assigned to a streaming
multiprocessor (SM)

Memory availability/speed is impacted by thread
organization

By configuring these parameters correctly, we can
get better performance

For instance...

CS 220: Parallel Computing

Performance Considerations

Each block gets assigned to an SM

The SMs split their blocks into warps
CUDA unit of SIMD execution
A warp = 32 threads

If the number of threads in the block isn't evenly
divisible by 32, then we'll have inactive threads:

20 threads? 12 are inactive

5/7/18 CS 220: Parallel Computing

10

Hello World

= Let's take a look at doing our usual “hello world"
(CUDA style)

5/7/18 CS 220: Parallel Computing

11

Math

S0, CUDA is not great for printing strings!

More recent hardware and versions of the SDK do
support printing directly from the kernel

cuPrintf is another option

Let's try something that GPUs are better at: math

5/7/18 CS 220: Parallel Computing

12

Argument Passing

Arguments to the CUDA kernel are passed by value
(copied)

To return anything back to the host program, we
have to use:

cudaMalloc

cudaMemcpy
And our old friend, pointers!

5/7/18 CS 220: Parallel Computing

13

Today's Schedule

GPUs vs CPUs
More Terminology
Getting Started Lab

Last 15 minutes:
Please fill out teaching effectiveness surveys
(you should've been emailed a link)

5/7/18 CS 220: Parallel Computing

14

NVCC

5/7/18

MPI and pthreads are both libraries built on C

CUDA requires its own compiler

We're not writing standard C/C++ code

A CUDA program ends with the extension .cu

Compiling:
nvcc my_program.cu -o my_program

To use nvcce, we need to configure our systems first

CS 220: Parallel Computing

15

Setting up the Environment

Every process inherits its environment from its
parent process

The environment contains several environment
variables that contain configuration information

Want to see your environment variables? Run ‘env’ at
your shell prompt

To use nvce, we need to set up one variable in
particular: PATH

5/7/18 CS 220: Parallel Computing

16

PATH

5/7/18

To check your path, run:
echo $PATH

If /usr/local/cuda/bin isn't in the path, you can add it
with:
export PATH=/usr/local/cuda/bin:$PATH

(You can also add this line to your ~/.bash_profile)

If your path is configured properly, you can run ‘nvcc’

and will be prompted to provide input files

CS 220: Parallel Computing

17

LD LIBRARY_PATH

= If you're having problems with CUDA functions not
being found, you may also need to modify your
LD _LIBRARY_ PATH:

= export LD_LIBRARY_PATH=/usr/local/cuda/lib64: $LD_LIBRARY_PATH

5/7/18 CS 220: Parallel Computing

18

Lab: CUDA

This lab has three parts:

In the first part, you'll compile Nvidia's device query
program
This lets us find out warp sizes, thread info, etc.

Second part: vector addition using CUDA
Third part: matrix multiplication using CUDA

5/7/18 CS 220: Parallel Computing

19

Today's Schedule

GPUs vs CPUs
More Terminology
Getting Started Lab

Last 15 minutes:
Please fill out teaching effectiveness surveys
(you should’'ve been emailed a link)

5/7/18 CS 220: Parallel Computing

20

