
Lecture 29

CS 220: Introduction to Parallel Computing

CUDA

§ GPUs vs CPUs
§ More Terminology
§ Getting Started Lab
§ Last 15 minutes:

Please fill out teaching effectiveness surveys
(you should’ve been emailed a link)

Today’s Schedule

5/7/18 CS 220: Parallel Computing 2

§ GPUs vs CPUs
§ More Terminology
§ Getting Started Lab
§ Last 15 minutes:

Please fill out teaching effectiveness surveys
(you should’ve been emailed a link)

Today’s Schedule

5/7/18 CS 220: Parallel Computing 3

§ We discussed the differences between GPUs and
CPUs last class
§ CPU = single paintball gun
§ GPU = lots of paintball guns?!

§ To be more fair: the CPU offers us a lot more
flexibility, but fewer cores

§ Naturally, these differences lead to changes in how
we think about implementing our programs

GPUs vs CPUs

5/7/18 CS 220: Parallel Computing 4

§ So we need to think about our problems in a different
way…

§ MPI is similar: many times we might think “we need to
do this in a loop”
§ …but we actually don’t always need loops, since all the

processes will execute the same thing

GPUs vs CPUs

5/7/18 CS 220: Parallel Computing 5

§ GPUs vs CPUs
§ More Terminology
§ Getting Started Lab
§ Last 15 minutes:

Please fill out teaching effectiveness surveys
(you should’ve been emailed a link)

Today’s Schedule

5/7/18 CS 220: Parallel Computing 6

§ When your CUDA program starts, it executes the
main() function on the host
§ Runs on the CPU and uses main memory

§ The host is responsible for launching the kernel
§ Runs on the GPU and uses GPU memory

§ Kernels are launched with this syntax:
kernel_name<<<grid_size, block_size>>>(params);
“Triple chevron” syntax <<< >>>

The Kernel

5/7/18 CS 220: Parallel Computing 7

§ A grid is a collection of blocks
§ A block is a collection of threads
§ Total number of threads?

grid_size * block_size
§ Note: the blocks can also be 2D and 3D:

<<<grid_sz, X, Y, Z>>>

Grids and Blocks

5/7/18 CS 220: Parallel Computing 8

§ Grids, blocks, and threads closely follow the
hardware and logical design of GPUs
§ Each block gets assigned to a streaming

multiprocessor (SM)
§ Memory availability/speed is impacted by thread

organization

§ By configuring these parameters correctly, we can
get better performance

§ For instance…

Why it Matters

5/7/18 CS 220: Parallel Computing 9

§ Each block gets assigned to an SM
§ The SMs split their blocks into warps

§ CUDA unit of SIMD execution
§ A warp = 32 threads

§ If the number of threads in the block isn’t evenly
divisible by 32, then we’ll have inactive threads:
§ 20 threads? 12 are inactive

Performance Considerations

5/7/18 CS 220: Parallel Computing 10

§ Let’s take a look at doing our usual “hello world”
(CUDA style)

Hello World

5/7/18 CS 220: Parallel Computing 11

§ So, CUDA is not great for printing strings!
§ More recent hardware and versions of the SDK do

support printing directly from the kernel
§ cuPrintf is another option
§ Let’s try something that GPUs are better at: math

Math

5/7/18 CS 220: Parallel Computing 12

§ Arguments to the CUDA kernel are passed by value
(copied)

§ To return anything back to the host program, we
have to use:

cudaMalloc
cudaMemcpy

And our old friend, pointers!

Argument Passing

5/7/18 CS 220: Parallel Computing 13

§ GPUs vs CPUs
§ More Terminology
§ Getting Started Lab
§ Last 15 minutes:

Please fill out teaching effectiveness surveys
(you should’ve been emailed a link)

Today’s Schedule

5/7/18 CS 220: Parallel Computing 14

§ MPI and pthreads are both libraries built on C
§ CUDA requires its own compiler

§ We’re not writing standard C/C++ code

§ A CUDA program ends with the extension .cu
§ Compiling:

nvcc my_program.cu -o my_program
§ To use nvcc, we need to configure our systems first

nvcc

5/7/18 CS 220: Parallel Computing 15

§ Every process inherits its environment from its
parent process

§ The environment contains several environment
variables that contain configuration information

§ Want to see your environment variables? Run ‘env’ at
your shell prompt

§ To use nvcc, we need to set up one variable in
particular: PATH

Setting up the Environment

5/7/18 CS 220: Parallel Computing 16

§ To check your path, run:
echo $PATH

§ If /usr/local/cuda/bin isn’t in the path, you can add it
with:

export PATH=/usr/local/cuda/bin:$PATH

§ (You can also add this line to your ~/.bash_profile)

§ If your path is configured properly, you can run ‘nvcc’
and will be prompted to provide input files

PATH

5/7/18 CS 220: Parallel Computing 17

§ If you’re having problems with CUDA functions not
being found, you may also need to modify your
LD_LIBRARY_PATH:

§ export LD_LIBRARY_PATH=/usr/local/cuda/lib64: $LD_LIBRARY_PATH

LD_LIBRARY_PATH

5/7/18 CS 220: Parallel Computing 18

§ This lab has three parts:
§ In the first part, you’ll compile Nvidia’s device query

program
§ This lets us find out warp sizes, thread info, etc.

§ Second part: vector addition using CUDA
§ Third part: matrix multiplication using CUDA

Lab: CUDA

5/7/18 CS 220: Parallel Computing 19

§ GPUs vs CPUs
§ More Terminology
§ Getting Started Lab
§ Last 15 minutes:

Please fill out teaching effectiveness surveys
(you should’ve been emailed a link)

Today’s Schedule

5/7/18 CS 220: Parallel Computing 20

