CS 220: Introduction to Parallel Computing

Arrays

Lecture 4



Note: Windows

= | updated the VM image on the website

= It now includes:
= Sublime text
= Gitkraken (a nice git GUI)

= And the git command line tools

1/30/18 CS 220: Parallel Computing



Today's Agenda

= Argument Passingin C
= Compilation Phases

= Arrays

1/30/18 CS 220: Parallel Computing



Today's Agenda

= Argument Passing in C
= Compilation Phases

= Arrays

1/30/18 CS 220: Parallel Computing



Argument Passing Conventions

1/30/18

Coming from the Java or Python world, we're used to
passing inputs to our functions

The result of the functionis given to us in the
return value

There are situations where this convention does not
hold, but it's less common

This is not the case with C...

CS 220: Parallel Computing



An Example

/* Here's a functlion that increments
* an 1lnteger. x/

void add _one(int *i)

{

1 = %1 + 1;
}
int a = 63

add_one(&a); /* a 1s now 7 %/

1/30/18 CS 220: Parallel Computing



C "In/Out” Arguments

= In C, some of the function arguments serve as outputs

= Or in the example we just saw, the function argument is
both an input and an output!

= Some APl designers even label these arguments as “in" or
“out” args (example from the Windows API):

BOOL WINAPI FindNextFile(
_In_ HANDLE hFindF1ile,
OQut_ LPWIN32_FIND_DATA 1lpFindFileData

)7
= Why?

1/30/18 CS 220: Parallel Computing



Error Reporting

1/30/18

One reason for this is C does not have exceptions

Problem in a Java/Python function?
Throw an exception!

In C, the return value of functions often indicates
success or failure (bool)

Or a maybe something in between (int) — status code

Functions don't have to be designed this way, but it's
a very common convention

CS 220: Parallel Computing



Efficiency

Return values have to be copied back to the calling
function
Say my function returns a bitmap image. The entire
thing is going to get copied!
In a language that focuses on speed and efficiency,
updating the values directly in memory is faster

Imagine transferring lots of large strings, objects, etc.
around your program, copying them between
functions each and every time

1/30/18 CS 220: Parallel Computing



C Argument Passing

1/30/18

So remember: the return value in C might not
actually be the result of the function

It may just be an error code or status code

It might just be a Boolean

True means success, false means failure

Or maybe one of the function inputs was modified
directly instead

Efficiency benefits

CS 220: Parallel Computing

10



Void Argument (1/3)

1/30/18

In C, there's a difference between
function() and function(void)

Void arg: the function takes no arguments
Empty arg list: the function may or may not take

arguments

If it does, they can be of any type and there can be
any number of them

CS 220: Parallel Computing

11



Void Argument (2/3)

Why is this important?

First, to understand older code
From the C11 standard:

“The use of function declarators with empty
parentheses (not prototype-format parameter type
declarators) is an obsolescent feature.”

Second, this may lead to incorrect function
prototypes or passing incorrect args in your code

1/30/18 CS 220: Parallel Computing 12



Void Argument (3/3)

So, to sum up:

/* Takes an unspecified number of args: */
volid function();

/* Takes no args: */
vold function(void);

1/30/18 CS 220: Parallel Computing

13



Today's Agenda

= Argument Passingin C
= Compilation Phases

= Arrays

1/30/18 CS 220: Parallel Computing

14



Recall: Phases of C Compilation

1/30/18

Preprocessing: perform text substitution, include
files, and define macros. The first pass of
compilation.

Directives begin with a #

Translation: preprocessed code is converted to
machine language (also known as object code)

Linking: your code likely uses external routines (for
example, printf from stdio.h). In this phase, libraries
are added to your code

CS 220: Parallel Computing 15



Stepping Through Compilation

= When we compile our source code, we get an output
binary that is ready to run

= The steps are mostly invisible to us

= We can ask the compiler to only execute a subset of
its compilation phases

= Let's do just that!

1/30/18 CS 220: Parallel Computing

16



Preprocessing

We can ask gcc to only perform the preprocessing
step using the -E flag:

gcc -Emy_program.c
This will print the preprocessed file to the terminal

We can write this output to a file by redirecting the
stdout (standard output) stream:

gcc -E my_program.c > my_program.pre

... And view with a text editor

1/30/18 CS 220: Parallel Computing

17



Translating to Assembly Code

= We can also view the assembly code generated by
the compiler

= gcc -S my_program.c
* Produces my_program.s
= This representation is very close to the underlying
machine code

= For a reference on x86-64 processor assembly:

= https://web.stanford.edu/class/cs107/quide x86-
64.html

1/30/18 CS 220: Parallel Computing 18



Producing Object Code

Finally, we can produce the machine code / object
code representation of the program

gcc -C my_program.c

Produces my_program.o

We can view this with a hex editor

hexdump -C my_program.o

1/30/18 CS 220: Parallel Computing

19



Linking

Finally, our object code is linked against the other
necessary libraries to create an executable

Nothing to inspect here, but we can always view the
output binary in a hex editor:

hexdump -C my_program

1/30/18 CS 220: Parallel Computing

20



Today's Agenda

= Argument Passingin C
= Compilation Phases

= Arrays

1/30/18 CS 220: Parallel Computing

21



Arrays

In C, arrays let us store a collection of values of the
same type

They are similar to the arrays in Java, and roughly
analogous to the lists in Python
However, Python lets us store values of different
types:
my list=[1, 6.8, “"San Francisco" ]
In C, an array is nothing more than a block of memory
set aside for a collection of a particular type

1/30/18 CS 220: Parallel Computing 22



Creating an Array

nJdava:int[] numbers = new 1nt[100];

n Python: numbers = []

n C:
int 1ist[10];
double dlist[15];

Note that here, the arrays must be dimensioned
when they're declared

In older versions of C the dimension had to be a
constant

1/30/18 CS 220: Parallel Computing

23



Accessing Array Elements

= Retrieving the values of an array is the same as itisin
Java:
= list[2] = 7;
= list[1] = 1list[2] + 3;
= However, one interesting note about C is there is no
boundary checking, so:
1ist[10] = 7;
dlist[17] = 2.0;
...may work just fine.

1/30/18 CS 220: Parallel Computing



Experiment: When will it Break?

We can try modifying out-of-bounds array elements

We can even doitinaloop to test the limits

Different operating systems / architectures may react
differently

Let's demo this now...

At this point, you might be wondering:
What is wrong with C?!
What is the meaning of life?

1/30/18 CS 220: Parallel Computing

25



Accessing Array Values

= So we can do things like this in C:
int list[5];
1ist[10] = 7;

= Your program may work fine... or crash!
* |It's never a good idea to do this

= So why does C let us do it anyway?

1/30/18 CS 220: Parallel Computing

26



Safety and Performance

C favors performance over safety
Compare: C program vs Python equivalent
Helpful: time command

Especially in the glory days of C, adding lots of extra
checks meant poor performance

Extra 'if’ statement for each array access, etc...

Sometimes these safety features aren't necessary
Especially for perfect programmers?

You can always implement safety features yourself

1/30/18 CS 220: Parallel Computing 27



Creating an Array

Let's create our list of integers:
int 1ist[10];
When we do this, C sets aside a place in memory for

the array
It doesn't clear the memory unless we ask it to

A common cause of subtle bugs

Creating a list of integers initialized to zero:
int 1ist[10] = { 0 };

1/30/18 CS 220: Parallel Computing

28



Memory Access

What happens when you retrieve the value of
11st[5]7?
Find the location of list in memory

Move to the proper offset:
5*4 = pyte 20
Access the value

Accessing 11st[500] is just moving to a position in
memory and retrieving whatever is there

1/30/18 CS 220: Parallel Computing

29



Visualizing Arrays in Memory

/* Note: can calculate array
* dimensions automatically! */

int list[] = {

0,
1,
15,
2001
I
sizeof(int) = 4 (4 bytes)

1/30/18 CS 220: Parallel Computing

00

00

00

01

00

00

00

02

00

00

00

OF

00

00

07

D1

1ist[0]

list[1]

list[2]

1ist[3]

——

4
Elements

(4% 4) =

16 byte
array

30



The sizeof operator

= We can use the sizeof operator in C to determine
how big things are
= Somewhat like:
= len() in python
= length in Java, or
= .size() in Java

= Much more low-level
size_t sz = sizeof(int);
printf("%zd\n", sz);
// Prints 4 (on my machine)

1/30/18 CS 220: Parallel Computing

31



Array Size (1/2)

= Let's try this out:
int 1ist[10];
size_t list sz = sizeof(list);
= Any guesses on the output?
= On my machine, it's 40:
= 40 bytes (10 integers at 4 bytes each)

= This can be different depending on architecture

=InC,s1izeof (char) is guaranteed to be 1.

1/30/18 CS 220: Parallel Computing

32



Array Size (2/2)

= Knowing the number of bytes in the array can be useful,
but not that useful

= Usually we want to know how many elements there are in
an array

= To do this, we'll divide by the array type (int - 4 bytes):
int 1ist[10];
size_t list sz =
sizeof(list) / sizeof(list[0]);
printf("%zd\n", list sz);
/* Prints 10 (on my machine) x/

1/30/18 CS 220: Parallel Computing e



Behind the Scenes

Arrays in C are actually pointers
int list[5];
list isthesameas &l1ist[0];

You can't change what they point at, but otherwise
they work the same

So accessing 1l1st[2] isreally just dereferencing a
pointer that points two memory addresses from the
start of the array

...ever think about why we used 0-based arrays in CS?

1/30/18 CS 220: Parallel Computing 34



We can make this more “fun...”

Since arrays are just constant pointers, we have
another way to access them:

1ist[5]
Is the same thing as:
¥(list + 5)
Workflow:
Locate the start of the array
Move up 5 memory locations (4 bytes each®)
Dereference the pointer to get our value

1/30/18 CS 220: Parallel Computing



Pointer Arithmetic

= Manipulating pointers in this way is called
pointer arithmetic

=arr[i];
IS the same as
*(arr + 1);

=arr[6] = 42;
IS the same as
¥(arr + 6) = 42;

1/30/18 CS 220: Parallel Computing

36



Visualizing Arrays

int list[] = {
0,
1,
15,
2001
+s

sizeof(int) = 4

1/30/18

00

00

00

01

00

00

00

02

00

00

00

OF

00

00

07

D1

CS 220: Parallel Computing

1ist[0]

1ist[1]

list[2]

1list[3]

*(list)

*(list + 1)

*(list + 2)

*(list + 3)

37



A Note on Pointer Arithmetic

1/30/18

In general, stick with using regular array syntax

You may see pointer arithmetic in production code,
but it should only be used in situations that make the
code more understandable

Haphazardly showing off your knowledge of pointer
arithmetic is a recipe for confusing code

CS 220: Parallel Computing 38



Arrays as Function Arguments

1/30/18

When we pass an array to a function, its pointer-
based underpinnings begin to show

If we modify an array element inside a function, will
the change be reflected in the calling function?
Why?

In fact, when an array is passed to a function it
decays to a pointer

The function just receives a pointer to the first
elementin the array. That's it!

CS 220: Parallel Computing 39



Array Decay

When an array decays to a pointer, we lose some
iInformation

Type and dimension

Let's imagine someone just gives us a pointer
Do we know if it points to a single value?
Is it the start of an array?

Functions are in the same situation: they don't know
where this pointer came from or where it's been

sizeof doesn't work as expected

1/30/18 CS 220: Parallel Computing 40



Avoiding Decay

decay.c:22:19: warning: sizeof on array function
parameter will return size of 'int *' instead of

'int []' [-Wsizeof-array-argument]

sizeof(list),

To avoid this situation, we need to pass in the size of the array
as well.

You may have wondered why the sizes of arrays are always
being passed around in C code

This is why!

1/30/18 CS 220: Parallel Computing 41



Homework 1: Arrays

= Let's get started on HW1 (posted on the course
website)

= This homework introduces you to a few new
functions and gives you a chance to play with arrays

1/30/18 CS 220: Parallel Computing

42



