CS 220: Introduction to Parallel Computing

Strings

Lecture 5

Today's Agenda

= C Function Documentation
= Array Review

= Strings

1/31/18 CS 220: Parallel Computing

Today's Agenda

= C Function Documentation
= Array Review

= Strings

1/31/18 CS 220: Parallel Computing

C Function Documentation

Unix has a utility called man — short for ‘'manual’

Entries in the Unix manual are called ‘'man pages’
Many times your Google searches will locate man
pages that have been converted to HTML

There are several sections of man pages:

User Commands
System Calls

C Library Functions
...And many more

1/31/18 CS 220: Parallel Computing

Reading man Pages

= Simple as entering man <query> inyour terminal
“ Man man

= You can also specify the section:
= man 3 printf

= This is important for our class: we need section 3 for
C functions

= If you're not terminal-inclined, | also recommend this
page:
= http://en.cppreference.com/w/c

1/31/18 CS 220: Parallel Computing

Today's Agenda

= C Function Documentation
= Array Review

= Strings

1/31/18 CS 220: Parallel Computing

Array Review

1/31/18

An array can contain several values of the same type

Declare them like so: int my_array[100];

Under the hood, arrays behave much like pointers:
numbers[1] *(numbers + 1)

When you pass an array to a function, it decays to a
pointer

We lose both type and dimension

When this happens, we can't use sizeof to get the
number of elements in the array

CS 220: Parallel Computing

Thinking About Arrays & Pointers

= Here's a question: why do we have to use & here?

printf("Enter value %d: ", 1);
scant ("%f", &numbers[i]);

= Arrays are basically pointers, so we shouldn't need to
get the address, right?

= Recall what's going on behind the scenes:
numbers[i] *(numbers + 1)

= We're dereferencing the pointer to get the value it
points at

1/31/18 CS 220: Parallel Computing

Arrays & Pointers

= This means that we could do something like:
scant ("%d", &(*x(&list[0])));

= Which could be written:
scant ("%d", &(x(&(x(list + 0)))));

= Yeah, that's really clear!

= The thing to remember:

= When you access an array element with [], C is
automatically dereferencing the pointer for you

1/31/18 CS 220: Parallel Computing

Today's Agenda

= C Function Documentation
= Array Review

= Strings

1/31/18 CS 220: Parallel Computing

10

C Strings

In C, strings are nothing more than an array of

characters:

char str[] = "Hello World!";
Or, as a pointer:

char *str = "Hello World!";

Note, there is a difference between these two
examples!

Array version: can be modified

Pointer version: cannot be modified

1/31/18 CS 220: Parallel Computing

11

Mutability

1/31/18

When you initialize a string like this:
char str[] = "Hello World!";

The contents will be copied into the array and you
can modify them (it is mutable)

But when you do this:
char *str = "Hello World!";

You're just creating a pointer to a string literal

Embedded into your program (immutable)

CS 220: Parallel Computing

12

Strings as Arrays

= Let's look at a C string:

“HELLO” — | H E L L O ! \O

= Note how our string contains 6 characters, but the
array representation has 7

= The \O is the NUL byte, a control character

= We write it with two characters, but in memory it only
takes the space of a single character

1/31/18 CS 220: Parallel Computing

What's the use of NUL?

1/31/18

First, the presence of the NUL byte indicates a string
rather than just a plain old array of characters

As we know, we can't always reliably determine how
large an array is unless we keep track of its size
Array decay

When working with the C string library, this would be
extremely cumbersome!

NUL allows the string manipulation functions to
determine where the string ends

CS 220: Parallel Computing 14

Character Arrays vs. Strings

1/31/18

There is a subtle difference between a plain
character array and a string

A string is terminated by NUL (\0)

If you use a function that expects a string, make sure
It contains the NUL byte

Not doing so will likely lead to segmentation violations
(invalid memory accesses)

Why?

CS 220: Parallel Computing 15

The C String Library

#include <string.h>

strcpy —copy one string to another

strcat - concatenate two strings

strcmp —test for string equality

strlen-returns the length of the string (ignoring \0)
strtok —tokenize the string (split it up)

Documentation available in the man pages

1/31/18 CS 220: Parallel Computing

16

Copying a String (1/3)

Let's say you want to copy one string into another

char strl[] “Hello World!",
char *strl strl;

This doesn’'t make a copy; it just points to str1

What about:
char str2[] = stril;
Nope:
error: array initializer must be an

initializer list or string
literal

1/31/18 CS 220: Parallel Computing

17

Copying a String (2/3)

= We could loop through the array and copy each
character into the other, but that's a lot of work

= Better solution: strcpy:
char strl[] = "Hello World!";

char str2[12];
strcpy(stre, strl);
printf("%s\n", str2);

= But wait... This code has a big problem: array size

1/31/18 CS 220: Parallel Computing 18

Copying a String (3/3)

= Let's fix our bug:
char strl[] = "Hello World!";

char str2[13];

strcpy(stre, strl);
printf("%s\n", str2);
= We could also create a much larger array to copy into
= strcpy will go ahead and fill the rest with \0

1/31/18 CS 220: Parallel Computing

19

Reading a String

= Let's greet the user:
char str[100];
printf("Enter your name: ");
scanf ("%s", str);
printf("H1, %s!\n", str);

= Wait a minute! Where's our &?!

= Well, remember that when we see the [] brackets,
we're grabbing the actual values (via dereference)

= The array name only = a pointer to the first element

1/31/18 CS 220: Parallel Computing

20

Getting String Lengths

char str[] = "Hello";
/* Does not include \0: */

printf("Length = %zd\n", strlen(str));

1/31/18 CS 220: Parallel Computing

21

Demo: Working with Strings

1/31/18 CS 220: Parallel Computing

22

