
Lecture 7

CS 220: Introduction to Parallel Computing

Input/Output

§ Most useful programs will provide some type of input
or output

§ Thus far, we’ve prompted the user to enter their input
directly
§ scanf

§ There are more options:
§ Command line arguments
§ File I/O

Input/Output

2/5/18 CS 220: Parallel Computing 2

§ Command Line Arguments

§ Reading and Processing Files

§ Error Handling

Today’s Agenda

2/5/18 CS 220: Parallel Computing 3

§ Command Line Arguments
§ Reading and Processing Files

§ Error Handling

Today’s Agenda

2/5/18 CS 220: Parallel Computing 4

§ Passing command line arguments is a common form
of input:

./my_program testmode ./file.txt
§ We see this often with Unix utilities:

ls -l /my/directory
§ This makes providing input to a program easier, and

allows for scripting as well:
./my_program ${MODE} ./file.txt

Input From the Command Line

2/5/18 CS 220: Parallel Computing 5

§ You may have noticed an alternative version of our
main(void) function:

int main(int argc, char *argv[])

§ This allows us to accept and process command line
arguments
§ For example, when you run ‘git status,’ the string

‘status’ is passed to the main method
§ In fact, so is the name of the program, ‘git’

Command Line Arguments

2/5/18 CS 220: Parallel Computing 6

§ We receive two parameters:
§ argc – the number of command line arguments
§ argv – the arguments themselves

§ Some notes:
§ argc will always be at least 1
§ argv will always start with the name of your program

‘a.out’
‘array’

§ So if we want one argument, ‘status,’ we test whether
argc == 2

Argument Attributes

2/5/18 CS 220: Parallel Computing 7

§ Another thing to notice: how argv is defined
char *argv[]

§ A pointer to an array… Which we know is also
represented by a pointer
§ Or in other words, a pointer to a pointer

§ Here’s another valid definition of argv:
char **argv

§ So this is a 2D array: an array of character arrays

Looking Closer: argv

2/5/18 CS 220: Parallel Computing 8

§ Command line arguments are C strings
§ They are terminated by \0

§ If we’re looking for a status command, we can do a
string comparison:

strcmp(argv[1], "status");

§ If the string matches, we’ll run the ‘status
functionality’ in our hypothetical git program

Processing Arguments

2/5/18 CS 220: Parallel Computing 9

char stra[] = "Hello";
char strb[] = "Hello World!";

if (strcmp(stra, strb) == 0) {
printf("They're the same!\n");

}

Why == 0?

strcmp

2/5/18 CS 220: Parallel Computing 10

§ In many cases, you’ll want to accept an integer on the
command line

§ Converting a string to integer is accomplished with
the atoi() function
§ Available in the C standard library: #include <stdlib.h>

§ There are some others: atof(), atol()…

§ You may also wonder if there is an itoa() function
§ There is! But it is NOT part of the C standard

Converting Arguments

2/5/18 CS 220: Parallel Computing 11

Demo: Command Line Args

2/5/18 CS 220: Parallel Computing 12

§ Command Line Arguments

§ Reading and Processing Files
§ Error Handling

Today’s Agenda

2/5/18 CS 220: Parallel Computing 13

/* This opens the file specified by the
first command line argument: */

printf("Opening file: %s\n", argv[1]);
FILE *file = fopen(argv[1], "r");

/* Note the ”r”: open for reading */

Opening a File

2/5/18 CS 220: Parallel Computing 14

§ The basics:
§ r – read
§ w – write
§ a – append

§ This isn’t the full story, however: each mode can be
followed by a ‘+’
§ r+ - open for read and write, file must exist
§ w+ - open for read and write, file is created if not present

§ There are more details in the man page for fopen()

Open Modes

2/5/18 CS 220: Parallel Computing 15

§ Once we have opened a file, we need to read it

§ A common approach is reading line by line via the fgets
function:

char line[500];

while (fgets(line, 500, file) != NULL) {

/* Process the line */

}

§ This uses a 500-character buffer to store the line
§ fgets will also stop once it finds a newline (\n) character

Reading Line by Line – fgets

2/5/18 CS 220: Parallel Computing 16

§ When you reach the end of a file, you’ll get a NULL or
EOF return value
§ This tells you that you’ve reached the

End Of File

§ If you want to loop through the file again, go back to
the start:
§ fseek(file, 0L, SEEK_SET);
§ rewind(file); /* Note: old, deprecated */

§ You can also re-open the file

Rewinding a File

2/5/18 CS 220: Parallel Computing 17

§ It’s good practice to also close your files when you’re
done with them:
§ fclose(file)

§ Each file you open uses up a file descriptor
§ The operating system imposes limits on how many file

descriptors can be open per program

§ When you open several files, don’t forget to close
them when you’re done!

Cleaning Up

2/5/18 CS 220: Parallel Computing 18

§ A common use case for strings is tokenization
§ Or, splitting them based on characters

§ Consider the following string:
§ "Hello, how are you today?";

§ How can we retrieve each word individually?
§ [Hello,] [how] [are] [you] [today?]
§ Java/Python have nice split() methods for this

§ In C, we can use strtok

String Tokenization

2/5/18 CS 220: Parallel Computing 19

/* Tokenize based on space and newline
* characters: */

char *token = strtok(line, " \n");
while (token != NULL) {

/* do something with token */
/* then grab the next token: */
token = strtok(NULL, " \n");

}

Tokenizing a String

2/5/18 CS 220: Parallel Computing 20

§ Blank lines won’t contain any tokens
§ You’d expect strtok() to just return NULL

immediately, but this is not the case

§ If there are *no* tokens found, the entire string is
returned
§ Makes more sense if we take a look at how strtok() is

implemented

Why include \n?

2/5/18 CS 220: Parallel Computing 21

§ When it comes to C functions, strtok is one of the
stranger ones

§ First, we pass in the string we want to tokenize

§ After that, we pass in NULL and it gives us the next
token

§ How does it even know what string to operate on?
§ strtok maintains a global pointer to the start of the

most recent token

How strtok Works

2/5/18 CS 220: Parallel Computing 22

§ In C, we have global and local variables
§ Globals are defined outside of any function

§ For example, up above your main function

§ Some C library functions even do this
§ When you #include them, they get added to your code
§ C provides the static keyword to restrict global

variables’ scope to their compilation unit
§ Generally compilation unit = file
§ This way we don’t pollute the global namespace

strtok – Global State

2/5/18 CS 220: Parallel Computing 23

§ Beyond the strange pointer magic, we also need to
know how strtok splits things up

§ It scans through the string until it comes across one
of the user-defined tokens

§ The token is replaced with \0
§ Now printing the string only prints up to the NUL byte
§ To move to the next token, strtok simply changes the

pointer to come after the NUL byte!

strtok – Splitting Strings

2/5/18 CS 220: Parallel Computing 24

§ Command Line Arguments
§ Reading and Processing Files
§ Error Handling

Today’s Agenda

2/5/18 CS 220: Parallel Computing 25

§ Thus far we’ve pretended that errors don’t happen
§ This can be okay: if a user doesn’t enter a value, for

instance, then maybe everything will just be zero

§ Sometimes you do need to know when something
went wrong
§ Example: trying to read a file that doesn’t exist

§ In C, errors are indicated with the return code
§ You need to check the function info to find out what

the return codes mean

Error Handling

2/5/18 CS 220: Parallel Computing 26

§ The perror() function is your friend when you want to
get a user-friendly description of what went wrong

cannot access 'blah.txt': No such file or directory

§ When an error occurs, the C library updates the last
error code

§ Calling perror() will look up this error code and print a
friendly description

§ You can add a prefix string to help you trace through
your code

Printing Error Messages

2/5/18 CS 220: Parallel Computing 27

#include <stdlib.h>

FILE *file = fopen("data.txt", "r");
if (file == NULL) {

perror("fopen");
return EXIT_FAILURE;

}

Opening a File: Error Handling

2/5/18 CS 220: Parallel Computing 28

§ One important note about using the perror() function:
it only knows about C library errors

§ If you prompt the user to enter a positive number and
they enter a negative one instead, perror() won’t help

§ In those cases, you’re on your own
§ But still make sure you report the error!

Error handling – perror()

2/5/18 CS 220: Parallel Computing 29

§ You may have noticed EXIT_FAILURE in the previous
example

§ This indicates that your program had to stop
because of some type of error condition

§ All programs provide an exit code – 0 generally
means success

EXIT_FAILURE

2/5/18 CS 220: Parallel Computing 30

#include <stdlib.h>

…

/* If you’re not in main(), you can still quit
your program: */

void my_func(void)
{

printf("Hello?\n");

exit(EXIT_FAILURE);

}

Quitting in Style – exit() function

2/5/18 CS 220: Parallel Computing 31

