CS 220: Introduction to Parallel Computing

Input/Output

Lecture 7



Input/Output

Most useful programs will provide some type of input
or output

Thus far, we've prompted the user to enter their input
directly

scanf

There are more options:

Command line arguments
File I/0

2/5/18 CS 220: Parallel Computing



Today's Agenda

= Command Line Arguments
* Reading and Processing Files

= Error Handling

2/5/18 CS 220: Parallel Computing



Today's Agenda

= Command Line Arguments
* Reading and Processing Files

= Error Handling

2/5/18 CS 220: Parallel Computing



Input From the Command Line

= Passing command line arguments is a common form
of input:
./my_program testmode ./file.txt

= We see this often with Unix utilities:
ls -1 /my/directory

= This makes providing input to a program easier, and
allows for scripting as well:

./my_program ${MODE} ./file.txt

2/5/18 CS 220: Parallel Computing



Command Line Arguments

You may have noticed an alternative version of our
main(void) function:

int main(int argc, char *argv[])
This allows us to accept and process command line
arguments

For example, when you run ‘git status,’ the string
‘'status’ is passed to the main method

In fact, so is the name of the program, ‘git’

2/5/18 CS 220: Parallel Computing



Argument Attributes

We receive two parameters:

argc —the number of command line arguments
argv — the arguments themselves

Some notes:
argc will always be at least 1

argv will always start with the name of your program
‘a.out’
‘array’

So if we want one argument, ‘status,’ we test whether
argc ==

2/5/18 CS 220: Parallel Computing



Looking Closer: argv

Another thing to notice: how argv is defined
char *xargv| ]

A pointer to an array... Which we know is also
represented by a pointer

Or in other words, a pointer to a pointer

Here's another valid definition of argv:
char *xkargyv

So thisis a 2D array: an array of character arrays

2/5/18 CS 220: Parallel Computing



Processing Arguments

2/5/18

Command line arguments are C strings
They are terminated by \0

If we're looking for a status command, we cando a
string comparison:

strcmp(argv[1l], "status");

If the string matches, we'll run the ‘status
functionality’ in our hypothetical git program

CS 220: Parallel Computing



strcmp

char stra[] = "Hello";
char strb[] "Hello World!";

i1f (strcmp(stra, strb) == 0) {
printf("They're the same!\n");

Why == 07?

2/5/18 CS 220: Parallel Computing

10



Converting Arguments

2/5/18

In many cases, you'll want to accept an integer on the
command line

Converting a string to integer is accomplished with
the atoi() function
Available in the C standard library: #include <stdlib.h>

There are some others: atof(), atol()...

You may also wonder if there is an itoa() function
There is! Butitis NOT part of the C standard

CS 220: Parallel Computing 11



Demo: Command Line Args

2/5/18 CS 220: Parallel Computing

12



Today's Agenda

= Command Line Arguments
= Reading and Processing Files

= Error Handling

2/5/18 CS 220: Parallel Computing

13



Opening a File

2/5/18

/* Thls opens the file specified by the
first command line argument: */

printf("Opening file: %s\n'", argv[1l]);
FILE xfile = fopen(argv[1l], "r'");

/* Note the ”"r”: open for reading */

CS 220: Parallel Computing

14



Open Modes

The basics:

r—read

w — write

a-—append
This isn't the full story, however: each mode can be
followed by a '+

r+ - open for read and write, file must exist

w+ - open for read and write, file is created if not present

There are more details in the man page for fopen()

2/5/18 CS 220: Parallel Computing 15



Reading Line by Line —fgets

= Once we have opened a file, we need to read it

= A common approach is reading line by line via the fgets
function:
char 1ine[5001];

while (fgets(line, 500, file) != NULL) {
/* Process the line %/

}

= This uses a 500-character buffer to store the line

= fgets will also stop once it finds a newline (\n) character

2/5/18 CS 220: Parallel Computing

16



Rewinding a File

When you reach the end of a file, you'll get a NULL or
EOF return value

This tells you that you've reached the
End Of File

If you want to loop through the file again, go back to
the start:

fseek(file, 0L, SEEK _SET);
rewind(file); /* Note: old, deprecated */

You can also re-open the file

2/5/18 CS 220: Parallel Computing

17



Cleaning Up

2/5/18

It's good practice to also close your files when you're
done with them:

fclose(file)

Each file you open uses up a file descriptor

The operating system imposes limits on how many file
descriptors can be open per program

When you open several files, don't forget to close
them when you're done!

CS 220: Parallel Computing 18



String Tokenization

A common use case for strings is tokenization

Or, splitting them based on characters
Consider the following string:
"Hello, how are you today?";

How can we retrieve each word individually?

[Hello,] [how] [are] [you] [today?]
Java/Python have nice split() methods for this

In C, we can use strtok

2/5/18 CS 220: Parallel Computing

19



Tokenizing a String

/* Tokenlze based on space and newline
* characters: */

char *token = strtok(line, " \n");
while (token != NULL) {
/* do something with token *x/
/% Tthen grab the next token: %/
token = strtok(NULL, "™ \n");

2/5/18 CS 220: Parallel Computing

20



Why include \n?

2/5/18

Blank lines won't contain any tokens

You'd expect strtok() to just return NULL
immediately, but this is not the case

If there are *no* tokens found, the entire string is
returned

Makes more sense if we take a look at how strtok() is
implemented

CS 220: Parallel Computing

21



How strtok Works

2/5/18

When it comes to C functions, strtok is one of the
stranger ones

First, we pass in the string we want to tokenize

After that, we pass in NULL and it gives us the next
token

How does it even know what string to operate on?

strtok maintains a global pointer to the start of the
most recent token

CS 220: Parallel Computing

22



strtok — Global State

In C, we have global and local variables

Globals are defined outside of any function

For example, up above your main function

Some C library functions even do this
When you #include them, they get added to your code

C provides the static keyword to restrict global
variables’ scope to their compilation unit

Generally compilation unit = file

This way we don't pollute the global namespace

2/5/18 CS 220: Parallel Computing 23



strtok — Splitting Strings

2/5/18

Beyond the strange pointer magic, we also need to
know how strtok splits things up

It scans through the string until it comes across one
of the user-defined tokens

The token is replaced with \O
Now printing the string only prints up to the NUL byte

To move to the next token, strtok simply changes the
pointer to come after the NUL bytel

CS 220: Parallel Computing

24



Today's Agenda

= Command Line Arguments
* Reading and Processing Files

= Error Handling

2/5/18 CS 220: Parallel Computing

25



Error Handling

Thus far we've pretended that errors don't happen

This can be okay: if a user doesn't enter a value, for
Instance, then maybe everything will just be zero

Sometimes you do need to know when something
went wrong

Example: trying to read a file that doesn't exist

In C, errors are indicated with the return code

You need to check the function info to find out what
the return codes mean

2/5/18 CS 220: Parallel Computing 26



Printing Error Messages

2/5/18

The perror() function is your friend when you want to
get a user-friendly description of what went wrong

cannot access 'blah.txt': No such file or directory

When an error occurs, the C library updates the last
error code

Calling perror() will look up this error code and print a
friendly description

You can add a prefix string to help you trace through
your code

CS 220: Parallel Computing

27



Opening a File: Error Handling

#include <stdlib.h>

FILE *file = fopen('"data.txt", "r");
if (file == NULL) {

perror("fopen™);

return EXIT_FAILURE;

2/5/18 CS 220: Parallel Computing

28



Error handling — perror()

2/5/18

One important note about using the perror() function:
it only knows about C library errors

If you prompt the user to enter a positive number and
they enter a negative one instead, perror() won't help

In those cases, you're on your own

But still make sure you report the error!

CS 220: Parallel Computing

29



EXIT_FAILURE

You may have noticed EXIT_FAILURE in the previous
example

This indicates that your program had to stop
because of some type of error condition

All programs provide an exit code — 0 generally
means SUCCESS

2/5/18 CS 220: Parallel Computing

30



Quitting in Style — exit() function

finclude <stdlib.h>

/* If you’re not i1n main(), you can still quit
your program: %/

volid my_func(void)

{
printf("Hello?\n");

ex1t (EXIT_FAILURE);

2/5/18 CS 220: Parallel Computing

31



