
Lecture 8

CS 220: Introduction to Parallel Computing

Input/Output II

§ Debugging and I/O Buffering

§ I/O Streams

§ Writing files

Today’s Agenda

2/7/18 CS 220: Parallel Computing 2

§ Debugging and I/O Buffering

§ I/O Streams

§ Writing files

Today’s Agenda

2/7/18 CS 220: Parallel Computing 3

§ One of the simplest ways to debug a program is
printing information to the terminal

§ For example, HW1:
§ If your min/max functionality isn’t working, then you

can print the value before and after the change
§ You can also print the values as you loop through the

arrays

§ This is fairly effective, and is used in production code
when combined with preprocessor directives

printf Debugging

2/7/18 CS 220: Parallel Computing 4

§ From stackoverflow (https://stackoverflow.com/questions/5765175/macro-

to-turn-off-printf-statements):

#define LOG(fmt, ...) \
do { \

if (DEBUG) fprintf(stderr, fmt, __VA_ARGS__); \
} while (0)

§ What is the benefit of this approach?

Smarter printf Debugging

2/7/18 CS 220: Parallel Computing 5

Demo: Preprocessor Debug

2/7/18 CS 220: Parallel Computing 6

§ Let’s say we’re working on a bug and want to
determine what’s wrong… printf to the rescue!

§ Unfortunately, sometimes printing to the terminal can
be misleading

§ The printf() may execute, but the program crashes
before any output is displayed

§ This occurs due to Input/Output (I/O) Buffering

printf Debugging: Problems

2/7/18 CS 220: Parallel Computing 7

§ Input/output operations are expensive: they have
high latency
§ Printing to the terminal is outputting data to the

standard output stream
§ Writing to disk or controlling an external hardware

device are also I/O operations

§ These devices generally operate on buffers
§ Example: our serial console has a 2-byte buffer; we fill

up the buffer before asking it to print the text

I/O Buffering (1/2)

2/7/18 CS 220: Parallel Computing 8

§ You may have used buffered streams in Java to get
better performance

§ You might have also noticed what happens when you
forget to close a stream…

§ Buffered I/O collects multiple I/O operations,
combines them, and then executes them
§ Important: matching up with hardware capabilities

I/O Buffering (2/2)

2/7/18 CS 220: Parallel Computing 9

§ Printing to your terminal accesses a virtual device, a
pseudoterminal
§ Back in the days of mainframes, everybody had a

physical terminal on their desk

§ Accessing a device, virtual or otherwise, requires a
system call
§ Privileged operations executed by the OS that interact

with the hardware
§ These take time

Why is I/O Buffering Used? (1/2)

2/7/18 CS 220: Parallel Computing 10

§ I/O buffering batches the writes into groups to
reduce the amount of system calls

§ Rather than printing:
§ ‘H’, ‘e’, ‘l’, ‘l’, ‘o’

§ It’s faster to just print:
§ ‘Hello’

§ Unfortunately, if your program crashes before the
buffer is flushed, everything is lost

Why is I/O Buffering Used? (2/2)

2/7/18 CS 220: Parallel Computing 11

§ Large buffers are expensive
§ See: high-end networking hardware
§ If they’re too large, we’re just wasting space

§ Small buffers may increase latency
§ More I/O operations

§ More round trips
§ More context switching at the OS level

Sizing our Buffers

2/7/18 CS 220: Parallel Computing 12

§ Sometimes when debugging your program crashes
before the buffer gets cleared
§ Data is lost

§ To make the print operation happen *now*, we need
to flush the output stream:
§ fflush(stdout);

Flushing the Output Stream

2/7/18 CS 220: Parallel Computing 13

§ Flushing the buffer when it’s not full or at inopportune
times for the OS incurs more latency
§ Performing the print operation takes several steps,

and that takes time

§ We can compare the performance of two C
programs, one that flushes I/O and one that does not
§ Example on schedule: flush.c

Why not always call fflush()?

2/7/18 CS 220: Parallel Computing 14

Demo: fflush

2/7/18 CS 220: Parallel Computing 15

§ I/O buffers are often flushed when a newline (\n) is
encountered

§ If you make sure to add a newline character to your
print statements, they generally will be flushed to
the display and useful for debugging
§ Not a guarantee though – the only way to know for

sure is to call fflush each time!

Another Tip

2/7/18 CS 220: Parallel Computing 16

§ Debugging and I/O Buffering

§ I/O Streams

§ Writing files

Today’s Agenda

2/7/18 CS 220: Parallel Computing 17

§ I mentioned the standard output stream earlier…
stdout

§ Each program gets allocated three streams by
default:
§ stdout (standard output)
§ stderr (standard error)
§ stdin (standard input)

§ These streams have different functions…

Input/Output Streams

2/7/18 CS 220: Parallel Computing 18

§ When you call printf, you are writing to stdout
§ This stream is designed for general program output;

for example, if you type ‘ls’ then the list of files should
display on stdout

§ You can pipe stdout to other programs:
§ ls -l / | grep 'bin'

§ …or redirect to a file:
§ ls -l / > list_of_files.txt

stdout

2/7/18 CS 220: Parallel Computing 19

§ The standard error stream is used for diagnostic
information

§ You may recall our LOG macro was printing to stderr

§ This way, program output can still be passed to other
programs/files but we’ll still see diagnostics printed
to the terminal
§ Helps us know when something went wrong

§ Unlike stdout, stderr is not buffered

stderr

2/7/18 CS 220: Parallel Computing 20

§ The final stream, stdin, is how we provide program
input (via scanf, for example)

§ This can be entered by the user, or we can pipe input
directly into a program:

ls -l / | grep 'bin'

stdin

2/7/18 CS 220: Parallel Computing 21

Writes file list to stdout Reads file list from stdin,
Writes matching files to stdout

§ Debugging and I/O Buffering

§ I/O Streams

§ Writing files

Today’s Agenda

2/7/18 CS 220: Parallel Computing 22

§ As we saw earlier, we can print to stderr with fprintf
§ File printf

§ stderr is actually a file – in fact, on Unix systems most
devices are represented as files
§ Try ls /dev to view the devices on your machine

(includes macOS)

§ So if we want to write data to a file, just pass it in:
§ fprintf(file, "My name is: %s", "Bob");

fprintf

2/7/18 CS 220: Parallel Computing 23

§ If you don’t need formatting functionality, you can
use puts to ”put a string” to your terminal

§ fputs is similar, but lets you specify a file:
§ FILE *file = fopen("my_file.txt", "w");
§ fputs("Hi there, file!\n", file);

§ Note: we need to fopen the file with ‘w’ mode.
§ Why does the file arg come after? Well, it is C…

puts & fputs

2/7/18 CS 220: Parallel Computing 24

§ One last thing we can do: print to a buffer

char buffer[100];

sprintf(buffer,"Hi, my favorite number is %d!", 42);

printf("Buffer contents ->%s\n", buffer);

sprintf

2/7/18 CS 220: Parallel Computing 25

