CS 220: Introduction to Parallel Computing

Input/Output Il

Lecture 8



Today's Agenda

= Debugging and I/0 Buffering
= |/0O Streams
= Writing files

2/7/18 CS 220: Parallel Computing



Today's Agenda

= Debugging and I/0 Buffering
= 1/0O Streams
= Writing files

2/7/18 CS 220: Parallel Computing



printf Debugging

2/7/18

One of the simplest ways to debug a program is
printing information to the terminal

For example, HW1:

If your min/max functionality isn't working, then you
can print the value before and after the change

You can also print the values as you loop through the
arrays

This is fairly effective, and is used in production code
when combined with preprocessor directives

CS 220: Parallel Computing



Smarter printf Debugging

= From stackoverflow (https://stackoverflow.com/questions/5765175/macro—

to-tu rn—off-printf-statements):

#define LOG(fmt, ...) \

do { \

if (DEBUG) fprintf(stderr, fmt, __VA_ARGS__); \
} while (0)

= What is the benefit of this approach?

2/7/18 CS 220: Parallel Computing



Demo: Preprocessor Debug

2/7/18 CS 220: Parallel Computing



printf Debugging: Problems

2/7/18

Let's say we're working on a bug and want to
determine what's wrong... printf to the rescue!

Unfortunately, sometimes printing to the terminal can
be misleading

The printf() may execute, but the program crashes
before any output is displayed

This occurs due to Input/Output (I/0) Buffering

CS 220: Parallel Computing



/0O Buffering (1/2)

Input/output operations are expensive: they have

high latency
Printing to the terminal is outputting data to the
standard output stream

Writing to disk or controlling an external hardware
device are also I/O operations

These devices generally operate on buffers

Example: our serial console has a 2-byte buffer; we fill
up the buffer before asking it to print the text

2/7/18 CS 220: Parallel Computing



/0O Buffering (2/2)

2/7/18

You may have used buffered streams in Java to get
better performance

You might have also noticed what happens when you
forget to close a stream...

Buffered I/0O collects multiple I1/O operations,
combines them, and then executes them

Important: matching up with hardware capabilities

CS 220: Parallel Computing



Why is |/O Buffering Used? (1/2)

Printing to your terminal accesses a virtual device, a
pseudoterminal

Back in the days of mainframes, everybody had a
physical terminal on their desk

Accessing a device, virtual or otherwise, requires a
system call

Privileged operations executed by the OS that interact
with the hardware

These take time

2/7/18 CS 220: Parallel Computing 10



Why is |/O Buffering Used? (2/2)

I/0O buffering batches the writes into groups to
reduce the amount of system calls

Rather than printing:
‘H, e, 'l'"I' "0’
It's faster to just print:

‘Hello’

Unfortunately, if your program crashes before the
buffer is flushed, everything is lost

2/7/18 CS 220: Parallel Computing

11



Sizing our Buffers

Large buffers are expensive
See: high-end networking hardware

If they're too large, we're just wasting space

Small buffers may increase latency

More I/O operations
More round trips

More context switching at the OS level

2/7/18 CS 220: Parallel Computing

12



Flushing the Output Stream

= Sometimes when debugging your program crashes
before the buffer gets cleared

= Datais lost

* To make the print operation happen *now*, we need
to flush the output stream:

= fflush(stdout);

2/7/18 CS 220: Parallel Computing

13



Why not always call fflush()?

Flushing the buffer when it's not full or at inopportune
times for the OS incurs more latency

Performing the print operation takes several steps,
and that takes time

We can compare the performance of two C
programs, one that flushes I/0O and one that does not

Example on schedule: flush.c

2/7/18 CS 220: Parallel Computing 14



Demo: fflush

2/7/18 CS 220: Parallel Computing

15



Another Tip

2/7/18

|/0O buffers are often flushed when a newline (\n) is
encountered

If you make sure to add a newline character to your
print statements, they generally will be flushed to
the display and useful for debugging

Not a guarantee though —the only way to know for
sure is to call fflush each time!

CS 220: Parallel Computing 16



Today's Agenda

= Debugging and I/0 Buffering
= 1/0 Streams
= Writing files

2/7/18 CS 220: Parallel Computing

17



Input/Output Streams

| mentioned the standard output stream earlier...

stdout

Each program gets allocated three streams by
default:

stdout (standard output)

stderr (standard error)

stdin (standard input)

These streams have different functions...

2/7/18 CS 220: Parallel Computing

18



stdout

When you call printf, you are writing to stdout

This stream is designed for general program output;
for example, if you type ‘Is’ then the list of files should
display on stdout

You can pipe stdout to other programs:
ls -1 / | grep 'bin'

...or redirect to afile:
ls -1 / > 1list of files.txt

2/7/18 CS 220: Parallel Computing

19



stderr

2/7/18

The standard error stream is used for diagnostic
iInformation

You may recall our LOG macro was printing to stderr

This way, program output can still be passed to other
programs/files but we'll still see diagnostics printed
to the terminal

Helps us know when something went wrong

Unlike stdout, stderr is not buffered

CS 220: Parallel Computing

20



stdin

The final stream, stdin, is how we provide program
input (via scanf, for example)

This can be entered by the user, or we can pipe input
directly into a program:

ls -1 / | grep 'bin'

e e

Writes file list to stdout Reads file list from stdin,
Writes matching files to stdout

2/7/18 CS 220: Parallel Computing 21



Today's Agenda

= Debugging and I/0 Buffering
= |/0O Streams
= Writing files

2/7/18 CS 220: Parallel Computing

22



fprintf

As we saw earlier, we can print to stderr with fprintf
File printf

stderr is actually a file —in fact, on Unix systems most
devices are represented as files

Try 1s /dev to view the devices on your machine
(includes macQYS)

So if we want to write data to afile, just pass it in:

fprintf(file, "My name 1s: %s'", "Bob");

2/7/18 CS 220: Parallel Computing 23



puts & fputs

2/7/18

If you don't need formatting functionality, you can
use puts to “put a string” to your terminal

fputs is similar, but lets you specify a file:
FILE *xfile = fopen('"my file.txt", "w");
fputs("H1 there, file!\n", file);

Note: we need to fopen the file with ‘'w’ mode.

Why does the file arg come after? Well, itis C...

CS 220: Parallel Computing 24



sprintf

= One last thing we can do: print to a buffer

char buffer[100];
sprintf(buffer,"Hi, my favorite number 1is %d!", 42);

printf("Buffer contents ->%s\n'", buffer);

2/7/18 CS 220: Parallel Computing

25



