CS 220: Introduction to Parallel Computing

Structs and Dynamic Memory

Lecture 9



Today's Agenda

= Structs

= Memory Allocation

2/9/18 CS 220: Parallel Computing



Today's Agenda

= Structs

= Memory Allocation

2/9/18 CS 220: Parallel Computing



Structs

C structs allow us to create groups of data

Do not have to be all the same type like arrays

These structures can contain multiple variables

With structs, we can implement something similar to

object-oriented programming found in Java or
Python

However, rather than embedding data and methods,
structs only contain data

Pure separation of concerns

2/9/18 CS 220: Parallel Computing



Defining a Struct (1/2)

struct struct_name {
int first integer;
int second_integer;

float single float;
I

2/9/18 CS 220: Parallel Computing



Defining a Struct (2/2)

struct user_data {
int account_number;
char first _name[100];
char last name[100];

I

2/9/18 CS 220: Parallel Computing



Creating a Struct

struct account userl;
/* 0r, 1nitialize to zero: x/

struct account userl = { 0 };

2/9/18 CS 220: Parallel Computing



Setting Values

Use dot notation:

struct account userl;
userl.account_number = 12;

/% Doesn't work: %/
userl.first_name = "Matthew";

/* Why? */

2/9/18 CS 220: Parallel Computing



Copying in Strings

2/9/18

struct account userl;
userl.account_number = 12;
strcpy(userl.first_name, "Matthew'");

printf("%s\n", userl.first_name);

CS 220: Parallel Computing



Pointers to Structs

Here, we use arrow notation. Why?

volid check _account(struct account *userl) {
userl->account_number = 100;
printf("%s\n", userl->first _name);

)

/* Equivalent: */

(xuserl).account_number = 100;

2/9/18 CS 220: Parallel Computing

10



A Few Questions...

Q: Are structs passed like our regular primitives (by
value), or like arrays (essentially passed by
reference)?

A: by value

Q: In other words, do we make copies when we pass
a struct around?

A: Yes.

Q: Can we have structs inside of structs?
A: Absolutely!

2/9/18 CS 220: Parallel Computing

11



Today's Agenda

= Structs

= Memory Allocation

2/9/18 CS 220: Parallel Computing

12



Dynamic Memory Allocation

2/9/18

You may have wondered why we often set up our
arrays with a fixed size ahead of time

For example, char 1ine[500];
This simplifies programming in C

However, we often need to cope with changing
requirements in our programs

We need dynamic memory allocation!

CS 220: Parallel Computing

13



The Heap

2/9/18

Dynamic memory is allocated on the Heap

Use dynamic memory when:
You need a large block of memory

You want to keep a variable around for along time
Great in theory, but can be difficult in practice

We're used to languages like Java and Python that
manage memory for us

In C, we need to do the heavy lifting

CS 220: Parallel Computing 14



Allocating Memory: malloc

= #include <stdlib.h>

=vold * malloc(size_t size);

= Remember the size _t type from our sizeof operator?

= This sets aside a block of memory for us to use

= We just need to give it the size

= Reminder: there is no guarantee the memory set
aside is zeroed out

2/9/18 CS 220: Parallel Computing

15



Freeing Memory: freel)

= #include <stdlib.h>

=volid free(void * ptr_p):

= Every malloc() must also have a freel)

= Without freeing the memory, you introduce
memory leaks

= Imagine doing this inside an infinite loop

2/9/18 CS 220: Parallel Computing

16



Use after free()

2/9/18

/* What happens here? x/

int %1 = malloc(sizeof(int));
printf("%d\n", *1);

free(1);

printf ("%d\n", *1);

CS 220: Parallel Computing

17



Dynamic Memory Functions

= calloc() - clears the memory and allocates it

= vold * calloc(size t num, size t size);

= realloc() — reallocates (resizes) dynamically-allocated
memory

= void * realloc(void *ptr, size t new_size);

2/9/18 CS 220: Parallel Computing

18



