
Lets
'

say we're implementing a linked list
.

To represent list elements
,

we use a struct :

struct list -
node {

int data ;
← the value of the list element

struct list
.

node * next ;
← pointer to the next

} ; element in the list

Here's a sample linked list containing values
3 ,

12
, 6

,
9 :

Head - www.T#ttnuu

For our example ,
let's start with an empty

list
. .

.

Int main (void) {
- pointer to NULL

struct list
.

node * head = NULL ;

insert (head
,

6) ;
...

TT} When calling insert C)
,

we copy head and 6

to pass by value

void insert (Struct list
.

node * head
,

int ual) {
we want to :

- create a new node (malloc)
- update the old list head inside main

Inside insert (1
,

we have :
- COIY of the address pointed by head (Null)

-

copy of 6

We can create the new node :

struct list
.

node new node = malloc (size of (struct list
.

node))
new node → data = val ;
new node → next = head ;

head = new node ; - won't work ! We are only changing a cop#

How do we fix this ? We can change
' head '

inside the insert C) function all day ,

but it's

not going to modify the variable in main C) !

Solution : let's pass apointerloaponter
(yikes !)

Int main (void) {
- pointer to NULL

struct list
.

node * head = NULL ;

insert @head
,

6) ;
... I

, Now we're passing in the addressof ' head
.

'

after insert :
' head '

in main points at our new node
,

and its

}
' next ' member points at NULL (the old head)

void insert (struct list
.

node * * head
,

int ual) {
Inside insert (1

,
we have :

- the address of the
' head 'variable in main C)

-

copy of 6 (* NOT a pointer to NULLD
We can create the new node :

struct list
.

node new node = malloc (size of (struct list
.

node))
new node → data = val ;
new node → next = * head ;that

new node ; Text should point to the

} \
go change what same thing as

' head ' in main C)
' head ' in main points at (currently Null)

Example 1 Example 2

(single pointer) (double pointer)

main

C)
main

C)
he@ → NULL head → NULL

�6� �6�

insert () insertC}
NULL Dead

�6� (copies) �6�

