CS 521: Systems Programming

Beginning C

Lecture 3

Today's Schedule

= Differences: C vs. Other Languages
= Editors

= Our First Program

CS 521: Systems Programming

Today's Schedule

- Differences: C vs. Other Languages
= Editors

= Our First Program

CS 521: Systems Programming

Architectural Differences

C is compiled to machine code, unlike Python or Java

The compiled binary executable contains instructions that
your CPU understands

There are several compilers on the market today (gcc, clang,
msvc) that transform your code into machine code

Java runs on a virtual machine (JVM)
Python is interpreted (translated to machine code on the fly)

We can achieve better performance with C, but are also given
more responsibility

Memory management is up to us (no automatic garbage
collection)

CS 521: Systems Programming

Main Advantages

C is fairly simple: the language does not have a
multitude of features

But coming from Java, the syntax is still familiar

It's the lingua franca of systems programming
When we operate close to the hardware, it can be
much easier to implement than the equivalent
Java/Python/etc.

Want to contribute to the Linux kernel? It's written in C
(including the drivers)

Performance

CS 521: Systems Programming

Main Disadvantages

Much less functionality is available in the standard

library than other languages
For example: no built in list, hashmap, tree, etc.

Memory leaks
Segmentation faults (invalid memory access)

No objects —if you're used to object-oriented
programming, C will make you rethink your program

CS 521: Systems Programming

Standardization

C is not controlled by a single entity; it is a standard

The standard itself is fairly loose, and allows undefined

behavior (UB)

Basically, the language standard doesn't specify how

everything should work
Compilers can do whatever they want with UB

This is why we're making sure we all have the same
platform (our VMs) in class “]

CS 521: Systems Programming

Today's Schedule

= Differences: C vs. Other Languages
- Editors

= Our First Program

CS 521: Systems Programming

Writing C Programs

[JOX J matthew@silicon — -zsh — 80x37

[X N J
[silicon:~/Desktop]$ gcc -Wall -g calibrate.c

C calibrate.c x calibrate.c:8:10: fatal error: 'linux/jiffies.h' file not found
i <1i jiffies.h>
#define DELAY_CALIBRATION_TICKS ((HZ ? H 5 #include Aiifgfﬂg:im&
#define MAX_DIRECT_CALIBRATION_RETRIES Z 1 error generated.
[silicon:~/Desktop]$ i

long calibrate_delay_direct(void)

pre_start, start, post_start;
pre_end, end, post_end;
g start_jiffies;
timer_rate_min, timer_rate_max;
good_timer_sum = @
g good_timer_count
g measured_times [MAX_DIRECT_CALIBRATION_RETRIES];

int i;

if (read_current_timer(&pre_start) < 0)
return 0;

Ln1,Col1 TabSize:4 UTF-8 LF C @

CS 521: Systems Programming

Writing C

2rograms

ece
#include <limits.h>

tmux new -s X — 204x60

#include <signal.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>
#include <ucontext.h>
#include <unistd.h>

/% Preprocessor Directives #/

#define NUM_PROCESSES 100

#define STACK_SIZE 8192

/% This "dummy function” is used to simulate a real CPU workload. It is basically
* just incrementing/decrementing a couple of counters. */
#define RUN_WORKLOAD(count) \

{ unsigned long i, j; for

(i=0, 3 = UINTMAX; i < count; ++i, —3); }

/% Process lifecycle phases %/

enum process_state {

[silicon:~/cpusched]$ make
ce scheduler.c -0 scheduler
scheduler.c:146:18: warning: 'swapcontext' is deprecated: first deprecated in mac0S 10.6
[-Wdeprecated-declarations]
int result = swapcontext(old_ctx, &pch->context);
A

t' has been explicitly marked deprecated here

i note: 'swapcont
int swapcontext(ucontext_t x __restrict, const ucontext_t % __restrict) __OSX_AVATLABLE_BUT_
A

scheduler.c:173:13: warning: 'getcontext' is deprecated: first deprecated in mac0S 10.6
[-Wdeprecated-declarations]
getcontext (&pcb->context) ;
A

i h:37:6: note: 'o ' has been explicitly marked deprecated here
int getcontext(ucontext_t *) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_5, __MAC_10_6, __IPHONE...
A

scheduler.c:177:13: warning: 'makecontext! is deprecated: first deprecated in mac0S 10.6
[-Wdeprecated-declarations

makecontext (&pcb->context, process,);
A

has been explicitly marked deprecated here
void makecontext(ucontext_t *, void (*)(), int, ...) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10.
A

scheduler.c:397:5: warning

‘getcontext' is deprecated: first deprecated in mac0s 10.6

[-Wdeprecated-declarations]
€D, getcontext (kg_main_ctx);
WAITING, A
RUNNING, Jusr/include/ucontext.h:37:6: note: 'getcontext' has been explicitly marked deprecated here
TERMINATED, int getcontext(ucontext_t %) __0SX_AVAILABLE BUT_DEPRECATED(__MAC_10.5, __MAC_106, __IPHONE...
; A
4 warnings generated.
e [silicon:n/cpusched]
* Encapsulates process metadata: [siliconi~/cpusched]$ # Un oh, so many warnings!
* - process 10, nane [silicon:w/cpusched]$ ||
* - current execution state

* - tining information

*/

struct process_ctl_block {
unsigned int pid;
char nane[128];
enum process_state state;

/* Process context information %/
char stack[STACK_SIZE];
ucontext_t context;

unsigned int creation_guantum; /* The time slice when process is created */
unsigned int workload; /* How much work this process will do */
unsigned int priority;

/* Wall clock times: %,
double arrival_time; /% When the process gets put into the run queue %/

double start_time; /x First time the process actually runs %/
double completion time; /# When the process completed ¥/

59,0-1 0%
2sh

matthewgsilicon

CS 521: Systems Programming

Systems Culture

There is a somewhat different culture in the systems
world

Using an IDE (like Eclipse, Intellid, etc) is less common

The Unix command line provides many of the usual
IDE features

Many developers prefer to use a text editor and a

terminal to write their programs
Text editor: edit, save

Terminal: compile, run

CS 521: Systems Programming

11

Recommendation

Use whatever is comfortable for you

If you get a chance, try to learn the basics of a terminal
editor (even nano counts!)

Or vim, emacs, micro

(maybe at least know how to quit vim and emacs...))
By the way, what's the universal "quit” key combination
in the terminal?

CS 521: Systems Programming

12

Today's Schedule

= Differences: C vs. Other Languages
= Editors

= Our First Program

CS 521: Systems Programming

13

Hello World

#tinclude <stdio.h>

int main(void)

{
printf('"Hello world!\n");
return 0;
b
.andtorun it

cc hello.c -0 hello
./hello

CS 521: Systems Programming

14

Slightly More Advanced

#include <stdio.h>
vold say_hello(int times);

int main(void) {
say_hello(6);

return Q;
)
volid say_hello(int times) {
int 1;
for (1 = 1; 1 <= times; ++1) {
printf("Hello world! (#%d)\n", 1);
)
¥

CS 521: Systems Programming

15

Differences from Java/

Python

Forward declarations (prototypes)

No objects

NoO exceptions

= Often error checking!

But, there are a lot of similarities...

CS 521: Systems Programming

Including libraries looks a bit different

No public/private etc. access modifiers

A huge difference: what return types are used for

16

Similarities to Java/Python

Arithmetic is mostly the same

We use &&, ||, and = instead of and, or and not
if, then, else

Loops

Switches

CS 521: Systems Programming

17

Some Advice

The similarity between C and Java can be deceiving
In these small programs, there's hardly a difference!

However, you will soon see that the structure of larger

programs ends up being quite different

Since there are no classes, the focus shifts to writing
functions

Organization might seem a bit less natural, but you
can still break your functions up into modules

CS 521: Systems Programming 18

