
C Data Types, Command

Line Arguments

CS 521: Systems Programming

Lecture 5

▪ Phases of Compilation

▪ Data Types

▪ C Input/Output: echo

Today’s Schedule

CS 521: Systems Programming 2

▪ Phases of Compilation

▪ Data Types

▪ C Input/Output: echo

Today’s Schedule

CS 521: Systems Programming 3

▪ You might have not cared much about compiling code

previously

▪ Compile: turn code into an executable

▪ …but with C, it’s a bigger deal

▪ The C compiler goes through a few phases to get from

code to a finished, ready-to-run binary executable

Compiling Your Programs

CS 521: Systems Programming 4

1. Preprocessing: perform text substitution, include files,

and define macros. The first pass of compilation.

▪ Directives begin with a #

2. Translation: preprocessed code is converted to

machine language (also known as object code)

3. Linking: adding external routines (for example, printf

from stdio.h).

▪ Sometimes you’ll compile separate modules to

object files (.o) and link them to form a single binary

Phases of C Compilation

CS 521: Systems Programming 5

▪ Phases of Compilation

▪ Data Types

▪ C Input/Output: echo

Today’s Schedule

CS 521: Systems Programming 6

▪ When defining arguments and variables, the following

data types are possible in C:

▪ char

▪ int

▪ float

▪ double

▪ Wait… that’s it?! Yeah! Well, there are a few modifiers:

▪ short , long , signed , and unsigned

C Data Types

CS 521: Systems Programming 7

▪ short and long modify the data type’s size

▪ The C standard specifies the minimum size for each type. You

can determine the sizes (in bytes) with sizeof :

▪ sizeof(char) = 1

▪ sizeof(short int) = 2

▪ sizeof(int) = 4

▪ sizeof(long int) = 8

▪ …but these can be platform-specific. Don’t make assumptions!

▪ One thing can be certain: char is guaranteed to be 1 byte

Sizing

CS 521: Systems Programming 8

(you can do this one on your VM, or local machine if you

have a C compiler!)

Demo: Data Type Sizes

CS 521: Systems Programming 9

▪ Integer types can be signed or unsigned

▪ Signed integers use one bit as a sign bit to determine

whether the number is negative or positive

▪ Java doesn’t have unsigned ints . What might they be

useful for?

▪ Enforce a particular variable to always be positive

▪ Use that extra bit to store larger positive numbers

▪ Related: integer overflow is undefined behavior (UB)

Signed Data Types

CS 521: Systems Programming 10

▪ Phases of Compilation

▪ Data Types

▪ C Input/Output: echo

Today’s Schedule

CS 521: Systems Programming 11

▪ To demonstrate C input and output (I/O), we’ll write a

program that takes input strings… and then outputs

them!

▪ There’s already a utility that does this: echo
▪ Let’s use a project-based approach to make our own

▪ Hear that?

▪ echo
▪ echo

▪ echo
▪ echo

Creating an Echo Chamber

CS 521: Systems Programming 12

▪ What does the echo command do?

[mmalensek@mmalensek-vm ~]$ echo

Wow!!!

[mmalensek@mmalensek-vm ~]$ echo Hello World!
Hello World!

Echo

CS 521: Systems Programming 13

▪ You probably already have a good grasp of what echo

does, but let’s go to the real authority: the

documentation!

▪ To access the manual pages, use the man command

▪ man echo

Going to the Documentation

CS 521: Systems Programming 14

▪ What do we need to be able to do to build our own copy

of echo ?

▪ The GNU version of echo supports a ton of features…

Maybe we can copy the BSD version instead

▪ (command line tools have a standard set of features,

but there are several different implementations!)

▪ Take a few minutes to come up with requirements…

Gathering Requirements

CS 521: Systems Programming 15

Here’s what I came up with.

▪ A way of accessing the command line arguments

passed to the program (e.g., ./prog arg1 arg2 arg3)

▪ A loop so we can iterate through each one

▪ We already know how to print… sort of. More detail there

would be good

▪ We need to handle the -n command line flag

Requirements

CS 521: Systems Programming 16

▪ In Java, the main method has one argument: an array

of strings that contain the command line args

▪ So far we’ve seen one way of declaring main in C:

int main(void)

▪ There is another way to do it!

int main(int argc, char *argv[])
▪ argc : argument count

▪ argv : argument values (as an array of char * …

what’s that?)

Command Line Arguments

CS 521: Systems Programming 17

▪ The first argument will always be the program name

▪ i.e., if you run ./some_prog then

argv[0] = "./some prog"

▪ This also means that argc will always be at least 1

The First Argument

CS 521: Systems Programming 18

▪ We can use a for loop with the argc count to loop

through all the arguments

▪ We haven’t fully discussed arrays yet, but let’s just

pretend we know what we’re doing!

▪ If I access argv[i] I will get the value of the array

of… char * ?

Next Requirement: A Loop

ith

CS 521: Systems Programming 19

▪ In C, the * indicates a pointer. So a char * type is a

pointer to a character.

▪ C does not have a string type… instead, we use arrays

of characters

▪ So char *argv[] is an array of pointers to characters

▪ geez

▪ Understanding that seems like it might take work, so

let’s save that for another day…

What the $%*@ is char star?

CS 521: Systems Programming 20

▪ We can google how to use printf , and we’ll get some

great answers

▪ But we can also look at the documentation:

▪ man 3 printf
▪ man 3 means use the 3rd section of the manual – the

C documentation.

▪ man printf will actually give you information about

something else – the printf command line utility

Printing

CS 521: Systems Programming 21

▪ We can use printf("%s", some_string); to print a

string

▪ If we use puts(some_string) it will include a newline

character (\n) at the end, and we don’t want that

Printing a String

CS 521: Systems Programming 22

▪ Most command line utilities support flags to make them

behave in different ways

▪ When echo receives a -n flag, it doesn’t print a trailing

newline

▪ How can we handle this? With a conditional!

▪ if (argv[i][0] == '-') {

/* First letter is a - character! */

/* What do we check for next? */

}

Handling Flags

CS 521: Systems Programming 23

▪ I thought argv was an array of pointers to A character, right?

▪ How are we indexing into it twice like a 2D array?

▪ Well…

▪ This is because in C, strings are arrays of characters.

▪ When you create a string, it is represented as a pointer to the

first character in that string

▪ When we do argv[i][0] we are accessing the first character

in the string

▪ Weird, but don’t worry yet. We will talk about Strings a LOT more

WAIT!

CS 521: Systems Programming 24

▪ We have enough information to start building an echo

utility

▪ This is the first part of Lab 2.

▪ Next up: more strings and I/O!

Putting it Together

CS 521: Systems Programming 25

