CS 521: Systems Programming
2ointers

Lecture 6

Today's Schedule

= Pointers

= Argument Passing Conventions

CS 521: Systems Programming

Today's Schedule

= Pointers

= Argument Passing Conventions

CS 521: Systems Programming

Passing by Value

In C, function arguments are passed by value
NOT pass by reference
This means that changes to the argument inside the

function are not reflected outside the function
When you call a function, like: location(2, 4);

Copies willbe made of 2 and 4 and passed to

location()

Sometimes we actually do want to change the value of a
variable when it's passed into a function, though...

CS 521: Systems Programming

2assing by Reference [1/2]

Here's what a swap function should produce, but it doesn't
seem possible if a and b are just copies:

int a = 3;

int b = 8;

printf("%d, %d\n", a, b);
swap(a, b);

printf("%d, %d\n", a, b);

Output:

oo W
w 0o

CS 521: Systems Programming

Passing by Reference [2/2]

If you want to make outside changes to a variable
passed to a function, then you must use pointers

Pointers are a special type of integer that hold a

memory address
They are still passed by value; the value is the memory
address

However, we can use the memory address to access
a variable defined outside a function

CS 521: Systems Programming

Pointer Syntax

int *x; —defines a pointer. Note that this doesn't create an

integer, it creates a pointer to an integer.
To make life a little easier, focus on the fact that it's a pointer.
Don't worry about its data type for now.

& —'address of’ operator. &a retrieves a pointerto a.
When a function takes a pointer as an argument, you need to
give it an address
After passing the value of the pointer (memory address), we
can dereference it (* operator) to retrieve/change the data it

points to:
*X = 45;

CS 521: Systems Programming

Pointing Somewhere Else

= Let's say we have a pointer, int *p.

= |f we assign a value to p , we are modifying the memory
address p points to.

= However, if we dereference p ,then we change the
actual memory it points at.

CS 521: Systems Programming

Demo: Writing swap()

CS 521: Systems Programming

Today's Schedule

= Pointers

= Argument Passing Conventions

CS 521: Systems Programming

10

Defining a Function

Functions are defined in C like this:

<return type> <function name>(<argument list>)

{
}

= |f the function does not return a value, the return type should be
void

= If there are no arguments, then the argument list is void (not
required)

= Let's dig a bit deeper into this...

CS 521: Systems Programming

11

Argument Conventions [1/2]

Coming from the Java or Python world, we're used to
passing inputs to our functions

The result (output) of the function is usually given to us
INn the return value
In Python you can even return a tuple. Nice!

This is not the case with C.
INn many cases, both the function inputs and outputs
are passed in as arguments

The return value is used for error handling

CS 521: Systems Programming 12

Argument Conventions [2/2]

Here's an example:

/* Here's a function that increments an integer. */
void add_one(int *1i)

{
}

*1 = *1 + 1;

int a = 6;
add _one(&a); /* a 1is now 7 */

CS 521: Systems Programming

13

‘In/Out” Arguments

In C, some of the function arguments serve as outputs

Or in the example we just saw, the function argument is
both an input and an output!

Some APl designers even label these arguments as “in”
or “out” args (example from the Windows API):

BOOL WINAPI FindNextFile(
In HANDLE hFindFile,
Out LPWIN32_FIND_DATA lpFindFileData

),

CS 521: Systems Programming 14

That's Weird... Why?!

Reason 1: C does not have exceptions
Problem in a Java/Python function? Throw an
exception!

Exceptions are a bit controversial among
programming language designers
In C, the return value of functions often indicates
success or failure, called a status code

Functions don't have to be designed this way, but it's a
Very common convention

CS 521: Systems Programming

15

—fficiency

Reason 2: Speed!

Return values have to be copied back to the calling

function
Say my function returns a bitmap image. The entire
thing is going to get copied!

In a language that focuses on speed and efficiency,
updating the values directly in memory is faster

Imagine transferring lots of large strings, objects, etc.
around your program, copying them the whole time

CS 521: Systems Programming 16

Arguments/Return Values: How to Know??

The return value might indicate a status code... and it
might not.

To be sure, use the man (manual) pages
(You could also google it, but that can occasionally
lead you to the wrong documentation / advice)

The C documentation is in section 3 of the man pages:

man 3 printf

Each man page will explain how the arguments and
return values are used

CS 521: Systems Programming

17

-rror Messages

Many C functions return a status code and set errno
Global variable that contains the last error number

You can use the perror() function to convertthis

number into plain English (or your local language)

Pass in a string prefix to help you trace your code:
Call perror("open"); after open(...) call

Result: open: No such file or directory
(@assuming the file being opened didn't actually
exist)

CS 521: Systems Programming

18

void Argument [1/3]

In C, there's a difference between function() and

function(void)
void arg: the function takes no arguments

Empty arg list: the function may or may not take

arguments
If it does, they can be of any type and there can be
any number of them

CS 521: Systems Programming

19

void Argument [2/3]

Why is this important?
First, to understand older code

From the C11 standard:
“The use of function declarators with empty
parentheses (not prototype-format parameter type
declarators) is an obsolescent feature.”

Second, this may lead to incorrect function prototypes

Or passing incorrect args in your code

CS 521: Systems Programming

20

void Argument [3/3]

S0, to sum up:

/* Takes an unspecified number of args: */
void function();

And:

/* Takes no args: */
void function(void);

CS 521: Systems Programming

21

