
Arrays

CS 521: Systems Programming

Lecture 7

▪ In C, arrays let us store a collection of values of the

same type

▪ int list[10];

▪ double dlist[15];

▪ Internally, they are represented as a chunk of memory

large enough to fit all the required elements

▪ Note that the arrays must be dimensioned when they’re

declared

▪ In older versions of C the dimension had to be a

constant

Arrays

CS 521: Systems Programming 2

▪ Setting/retrieving the values of an array is the same as it

is in Java:

▪ list[2] = 7;

▪ list[1] = list[2] + 3;

▪ However, one interesting note about C is there is no

boundary checking, so:

▪ list[500] = 7;

▪ …may work just fine.

▪ �

Accessing Array Elements

CS 521: Systems Programming 3

▪ We can try modifying out-of-bounds array elements

▪ see: array_break.c

▪ We can even do it in a loop to test the limits

▪ Different operating systems / architectures may react

differently

▪ Let’s try it now. Open your editor, create an array, and write a

loop that iterates beyond its boundaries.

▪ When does it segfault? How big was your initial array?

▪ At this point, you might be wondering:

▪ What is wrong with C?!

▪ What is the meaning of life?

Experiment: When will it Break?

CS 521: Systems Programming 4

▪ So we can do things like this in C:

▪ int list[5];

▪ list[10] = 7;

▪ Your program may work fine… or crash!

▪ It’s never a good idea to do this

▪ So why does C let us do it anyway?

Out-of-bounds Access

CS 521: Systems Programming 5

▪ C favors performance over safety

▪ Compare: C program vs Python equivalent

▪ Helpful: time command

▪ Especially in the glory days of C, adding lots of extra

checks meant poor performance

▪ Additional instructions for those checks

▪ If you don’t want/need them, then the language

shouldn’t force it on you!

▪ This can lead to dangerous bugs

Safety vs. Performance

CS 521: Systems Programming 6

▪ Let’s create our list of integers:

▪ int list[10];

▪ When we do this, C sets aside a place in memory for the

array

▪ It doesn’t clear the memory unless we ask it to

▪ Another common cause of subtle bugs

▪ Creating a list of integers initialized to zero:

▪ int list[10] = { 0 };

Initializing an Array [1/2]

CS 521: Systems Programming 7

Thus far we’ve always specified the array size. There is a

shorthand for doing this if you already know the contents

of the array:

// Will auto-size to 5:
int nums[] = { 1, 82, 9, -3, 26 };

Here, the compiler will fill in the size for you.

Initializing an Array [2/2]

CS 521: Systems Programming 8

▪ What happens when we retrieve the value of list[5] ?

▪ Find the location of list in memory

▪ Move to the proper offset: 5 * 4 = byte 20
▪ Assuming sizeof(int) = 4

▪ Access the value

▪ Accessing, say, list[500] is just moving to a position

in memory and retrieving whatever is there

Memory Access

CS 521: Systems Programming 9

/* Note: calculating the array
 * dimensions automatically! */

int list[] = {
 1,
 2,
 15,
 2001
};

sizeof(int) = 4

▪ Note how the visualization represents the

integers in hexadecimal

Visualizing Arrays in Memory

CS 521: Systems Programming 10

▪ We can use the sizeof operator in C to determine how

big things are

▪ Somewhat like:

▪ len() in python

▪ .length in Java, or

▪ .size() in Java

▪ Much more low-level

▪ size_t sz = sizeof(int);

▪ printf("%zd\n", sz); // Prints 4 (on my machine)

The sizeof Operator

CS 521: Systems Programming 11

▪ Let’s try this out:

▪ int list[10];

▪ size_t list_sz = sizeof(list);

▪ Any guesses on the output?

▪ (pause for everyone to yell out guesses)

▪ On my machine, it’s 40:

▪ 40 bytes (10 integers at 4 bytes each)

▪ This can be different depending on architecture

▪ In C, sizeof(char) is guaranteed to be 1.

Array Size [1/2]

CS 521: Systems Programming 12

▪ Knowing the number of bytes in the array can be useful,

but not that useful

▪ Usually we want to know how many elements there are

in an array

▪ To do this, we’ll divide by the array type (int - 4 bytes):

▪ int list[10];

▪ size_t list_sz = sizeof(list) / sizeof(list[0]);

▪ printf("%zd\n", list_sz); /* 10 (for me) */

Array Size [2/2]

CS 521: Systems Programming 13

▪ Arrays in C are actually (constant) pointers

▪ int list[5];

▪ list is the same as &list[0];

▪ You can’t change what they point at, but otherwise they

work the same

▪ So accessing list[2] is really just dereferencing a

pointer that points two memory addresses from the

start of the array

▪ …one reason we have 0-based arrays

Behind the Scenes

CS 521: Systems Programming 14

▪ Since arrays are just constant pointers, we have another

way to access them:

▪ list[5] is the same thing as: *(list + 5)

▪ Workflow:

1. Locate the start of the array

2. Move up 5 memory locations (4 bytes each*)

3. Dereference the pointer to get our value

We can make this more “fun…”

CS 521: Systems Programming 15

▪ Manipulating pointers in this way is called pointer

arithmetic

▪ arr[i]; is the same thing as: *(arr + i);

▪ arr[6] = 42; is the same as *(arr + 6) = 42;

Pointer Arithmetic

CS 521: Systems Programming 16

int list[] = {
 1,
 2,
 15,
 2001
};

sizeof(int) = 4

Visualizing Arrays with Pointer Arithmetic

CS 521: Systems Programming 17

▪ In general, stick with using regular array syntax

▪ You may see pointer arithmetic in production code, but

it should only be used in situations that make the code

more understandable

▪ Haphazardly showing off your knowledge of pointer

arithmetic is a recipe for confusing code �

A Note on Pointer Arithmetic

CS 521: Systems Programming 18

▪ When we pass an array to a function, its pointer-based

underpinnings begin to show

▪ If we modify an array element inside a function, will the

change be reflected in the calling function?

▪ …

▪ …why?

▪ In fact, when an array is passed to a function it decays

to a pointer

▪ The function just receives a pointer to the first

element in the array. That’s it!

Arrays as Function Arguments

CS 521: Systems Programming 19

▪ When an array decays to a pointer, we lose its

dimension information

▪ Let’s imagine someone just gives us a pointer

▪ Do we know if it points to a single value?

▪ Is it the start of an array?

▪ Functions are in the same situation: they don’t know

where this pointer came from or where it’s been

▪ sizeof() doesn’t work as expected

Array Decay

CS 521: Systems Programming 20

▪ Array dimensions are often very useful information!

▪ If we don’t know how many elements are in the array,

then we could read/write beyond the end of it

▪ There are two viable strategies to deal with this:

1. Pass the size of the array into the function as an

argument

2. Put some kind of identifier at the end of the array so

we know where it ends as we iterate through

▪ (this is the way strings work!)

Dealing with Decay

CS 521: Systems Programming 21

