CS 521: Systems Programming

Strings and /0O Streams

Lecture 8

Today's Schedule

= Strings
= |/O Streams

CS 521: Systems Programming

Today's Schedule

= Strings
= |/O Streams

CS 521: Systems Programming

C Strings

In C, strings are just special arrays of characters:
char str[] = "Hello World!"; // Mutable (array)

char *str = "Hello World!"; // Immutable (str. literal)

You can't see it, but the reason these character arrays are
special is because they end in \o

The NUL terminator
As we already discussed, we need to either pass dimensions
along with arrays OR include some way of knowing where they

end
\@ means "the end!”

CS 521: Systems Programming

Strings as Arrays

= Let's look at C strings:

“HELLO!” — | H E L L O !

\0

= Note how our string contains 6 characters, but the array
representation has 7 due to the NuL byte

= \0@ IS acontrol character

= Justlike \n, etc., we write it with two characters but it is just
shorthand for a single character

= |ts value also happens to be O (decimal)

= C string functions assume this is present; if it's not, you only
have an array of characters and your program will crash

CS 521: Systems Programming

Some C String Library Functions

#include <string.h>

strcpy — COpy one string to another

strcat —concatenate two strings

strcmp —test for string equality

strlen —returns the length of the string (ignoring \o)
strstr - search for a substring inside a string

strchr - search for a character inside a string

sprintf - create a string using printf -style formatting
strtok —tokenize the string (split it up)

Remember: documentation available in the man pages

CS 521: Systems Programming

Avoiding Buffer Overruns

The string functions you just saw have one weakness...
If they lack the \@ , they break!

This can lead to bugs, crashes, or even security
Issues

Most C string functions also have a version that allows

you to specify a fixed length
strncmp , strncpy , etc.

Notice the n: stxNcpy

Prefer these; they're slightly safer (if it makes sense...)

CS 521: Systems Programming

Copying a String [1/3]

Let’s say you want to copy one string into another:
char strl[] = "Hello World!";

char *str2 = stril;
This doesn't make a copy; it just points to strl

What about:
char str2[] = strl;

Nope: error: array initializer must be an

initializer list or string literal

CS 521: Systems Programming

Copying a String [2/3]

= We could loop through the array and copy each
character into the other, but that's a lot of work

= Better solution: strcpy
= (let's take a quick peek at the man page)

char strl[] = "Hello World!";
char str2[12];

strcpy(str2, strl),
printf("%s\n", str2);

But wait... This code has a big problem: array size

CS 521: Systems Programming

Copying a String [3/3]

Let's fix our bug:

char strl[] = "Hello World!";
char str2[13];

strcpy(str2, strl),
printf("%s\n", str2),;

We could also create a much larger array to copy into.

CS 521: Systems Programming

10

Getting String Lengths

We can use the strlen function to find out how many
characters (not including the \e) are in a string:

char str[] = "Hello";
printf("Length = %zd\n", strlen(str));

How would this be different than sizeof(str) ?

CS 521: Systems Programming

11

Comparing Strings (equality)

We unfortunately can't use == to check string equality

Instead, we use the strcmp function

It compares two strings based on their sort order

If it returns @ , the two strings are the same:
if (strcmp(str_a, str_b) == 0) { /* same! */ }

The following will not work as you might expect:
if (strcmp(str_a, str_b)) { /* same! */ }

There is a VERY good chance you'll make this
mistake!

CS 521: Systems Programming 12

Concatenating a String

strcat (and strncat) concatenate strings:

char *strcat(char *dest, const char *src);

char x[128] = "Hello";
char *y = "World";

strcat(x, " ");
strcat(x, y),
strcat(x, "!");

printf("%s\n", Xx);

Be careful: dest must be initialized before using strcat !

CS 521: Systems Programming

13

Concatenation: Another Option

You can use printf -style format specifiers to combine
strings with sprintf and snprintf :

char a[128];

char x[] = "Hello";
char *y = "World";
sprintf(x, "%s %s!", X, y);

Here, you're basically “printing” to a string.

CS 521: Systems Programming

14

More String Functions

There are a lot of string functions and things you can do
with strings

We will study more of them, but this gives you the
foundation you need for now

We often use Input/Output Streams to read or write
strings

CS 521: Systems Programming

15

Today's Schedule

= Strings
= |/O Streams

CS 521: Systems Programming

16

INnput/Output Streams

= Most useful programs will provide some type of input or
output

= Our main approach thus far is printing via printf

= What happens if we want input from the user? We can
use scanf .

printf("Please enter your age: "),

int age;

scanf("%d", &age);

printf("You are %d years old, huh? Wow!\n", age);

CS 521: Systems Programming

17

Reading a String With scanf

Let's greet the user:

char str[100];

printf("Enter your name: ");
scanf("%s", str);
printf("Hi, %s!\n", str);

= Wait a minute! Where's our &~

= Well, remember that when we seethe [] brackets,

we're grabbing the actual values (via dereference)
= The array name only = a pointer to the first element

CS 521: Systems Programming 18

INnput/Output Streams

= Each program gets allocated three I/O streams by

default:
= stdout (standard output)

= stderr (Standard error)

= stdin (standard input)

= These streams have different functions...

CS 521: Systems Programming

19

stdout

Whenyou call printf ,you are writing to stdout

This stream is designed for general program output; for
example, if you run 1s then the list of files should
display on stdout

You can use your shell to redirect stdout to a file:
1s -1 / > 1list of files.txt

CS 521: Systems Programming

20

stderr

The standard error stream is used for diagnostic information
Log messages often print to stderr

Program “usage” messages often go there too

This way, program output can still be passed to other
programs/files but we'll still see diagnostics printed to the
terminal

Lets us know when something went wrong

Demo: find command

Unlike stdout, stderr is not buffered

Will be flushed to the terminal immediately
More on that later

CS 521: Systems Programming

21

stdin

The final stream, stdin, is how we provide program input
(Via scanf , for example)

This can be entered by the user, or we can redirect input

directly into a program:

./my_prog < ./test_file.txt
Acts like a phantom user is typing the contents of
test file.txt' into the program

CS 521: Systems Programming

22

Special Characters

> — output redirection: send stdout to a file instead of
the terminal

cat something.txt > something_else.txt

>> — output redirection, but will append to the file
instead of overwriting

< —Input redirection: read from file instead of stdin

CS 521: Systems Programming

23

‘orintt debugging”

Let's say we're working on a bug and want to determine

what's wrong... printf to the rescue!
cough, *cough* don't do that, use logging... we'll talk
about this later!

Unfortunately, sometimes printing to the terminal can be
misleading

The printf() may execute, but the program crashes
before any output is displayed

This occurs due to Input/Output (1/0) Buffering

CS 521: Systems Programming 24

/O Buffering

Input/output operations are slow: they have high latency
Printing to the terminal outputs to stdout

Writing to disk or controlling an external hardware device are
also I/0O operations

These devices generally operate on buffers

Example: our terminal has a 8-byte buffer; we fill up the buffer
before asking it to print the text

You may have used buffered streams in Java to get better
performance

Buffered I/O collects multiple I/O operations, combines them,
and then executes them as one big operation

CS 521: Systems Programming 25

Flushing the Output Stream

= Sometimes when debugging your program crashes
before the buffer gets cleared
= Data is lost before the buffer is flushed
= To make the print operation happen now, we need to

flush the output stream:
= fflush(stdout);

CS 521: Systems Programming

26

Why not Always Flush?

Flushing the buffer when it's not full or at inopportune
times for the OS incurs more latency

Performing the print operation takes several steps, and
that takes time

We can compare the performance of two C programs,

one that flushes I/0O and one that does not
Demo: flush.c

CS 521: Systems Programming

27

