
File I/O

CS 521: Systems Programming

Lecture 9

▪ Reading Files

▪ Writing Files

Today’s Schedule

CS 521: Systems Programming 2

▪ Reading Files

▪ Writing Files

Today’s Schedule

CS 521: Systems Programming 3

C provides a function for opening files: fopen()

/* This opens the file specified by the
 * first command line argument: */
printf("Opening file: %s\n", argv[1]);
FILE *file = fopen(argv[1], "r");
if (file == NULL) {
 perror("fopen");
 // error handling
}
/* Note the ”r”: open for reading */

It returns a FILE * , which represents an open file

Opening a File: fopen

CS 521: Systems Programming 4

▪ The basics:

▪ r -– read

▪ w -– write

▪ a -– append

▪ This isn’t the full story, however: each mode can be

followed by a ‘+’

▪ r+ – open for read and write, file must exist

▪ w+ – open for read and write, file is created if not

present

▪ There are more details in the man page for fopen()

Open Modes

CS 521: Systems Programming 5

▪ Once we have opened a file, we need to read it

▪ A common approach is reading line by line via fgets :

char line[500];
while (fgets(line, 500, file) != NULL) {
 /* Process the line */
}

▪ This uses a 500-character buffer to store the line

▪ fgets will also stop once it finds a newline (\n)

character

Reading Line by Line: fgets

CS 521: Systems Programming 6

▪ When you reach the end of a file, you’ll usually get either

NULL or EOF for your return value

▪ In the case of fgets, NULL

▪ This tells you that you’ve reached the End Of File

▪ If you want to loop through the file again, go back to the

start:

▪ fseek(file, 0L, SEEK_SET);

▪ rewind(file); /* Note: old, deprecated */

▪ (You can also re-open the file 💩)

Rewinding a File

CS 521: Systems Programming 7

▪ It’s good practice to also close your files when you’re

done with them:

▪ fclose(file)

▪ Each file you open uses up a file descriptor

▪ The operating system imposes limits on how many file

descriptors can be open per program

▪ When you open several files, don’t forget to close them

when you’re done!

Cleaning Up

CS 521: Systems Programming 8

▪ Reading Files

▪ Writing Files

Today’s Schedule

CS 521: Systems Programming 9

▪ If you don’t need formatting functionality, you can use

puts to "put a string” to your terminal

▪ fputs is similar, but lets you specify a file:

▪ FILE *file = fopen("my_file.txt", "w");

▪ fputs("Hi there, file!\n", file);

▪ Note: we need to fopen the file with ‘w’ mode.

▪ Want to write a single character? fputc .

puts and fputs

CS 521: Systems Programming 10

▪ You can print to stderr with fprintf
▪ “File printf”

▪ stderr is represented as a file that is automatically

opened for you

▪ So if we want to write data to a file, just pass it to

fprintf after opening it:

▪ fprintf(file, "My name is: %s", "Bob");

fprintf

CS 521: Systems Programming 11

▪ Make sure you close the files that you are writing!

▪ fclose(file)

▪ If not closed, there is no guarantee that the output will

actually be written to the destination file

▪ Generally files on the disk are buffered more than, say,

stdout

▪ You can also use fflush() on a file you’ve opened

Cleaning Up (again!)

CS 521: Systems Programming 12

▪ fflush() empties a file’s buffer

▪ One of the most common places you’ll see fflush

used is after printing text to the terminal that you want

displayed NOW

▪ …but it can also be used to ensure data has been

written to a file

▪ Note: the OS may still buffer some data

▪ (we can compare flushing, not flushing, and flushing in

Python!)

Flushing Files

CS 521: Systems Programming 13

▪ Let’s take a look at how another utility works!

▪ cat is useful for concatenating files

▪ Sounds like something we can definitely do now,

right?

Unix Utility of the Week: cat

CS 521: Systems Programming 14

