CS 521: Systems Programming
Structs

Lecture 10



Structs

InC,a struct (structure) allows us to create groupings
of data

And the elements (members) of a struct don't have to

all be the same type, unlike arrays
Structs are about as close as we get to classes in
Java/Python
The big distinction: they only represent data

No mixing of functions and data

To create functions that operate on structs, you'll pass
the struct in as an argument

CS 521: Systems Programming



Defining a Struct [1/3]

|_et's create a struct to contain some numbers:

struct struct_name {
int first_integer;
int second_integer;
float single_float;
}i

Note the semicolon ; atthe end of the declaration

CS 521: Systems Programming



Defining a Struct [2/3]

Or, arrays can be struct members. Here, we see a couple of
strings:
struct user data {
int account_number;

char first _name[100] ;
char last_name[100];

CS 521: Systems Programming



Defining a Struct [3/3]

A struct can contain another struct, but they cannot be
self-referential (contain themselves). However, a pointer to
the struct type can be a member:

struct user data {
int account_number;
char first _name[100] ;
char last_name[100];
struct user_preferences prefs;
struct user_data *children; /* <-- This could be an array */

CS 521: Systems Programming



Initializing a Struct

/* Creating a struct: */
struct struct_name s; /* <-- Values may be uninitialized */

/* Creating a struct and populating it: */
struct struct_name si;

sl.first_integer = 3;
sl.second_integer = 9;
sl.single_float = 3.3f;
/* The same thing, but defined inline: */
struct struct_name s2 = { 3, 9, 3.3f };

/* Initializing everything to @: */
struct struct_name s3 = { 0 };

CS 521: Systems Programming



Setting Values

As you've seen, we use “dot notation” to set members of
a struct:

struct user _data userl;
userl.account_number = 12;

/* But... this doesn't work: */
userl.first name = "Matthew";
/* Why? */

/* ...and how can we fix it? */

CS 521: Systems Programming



Copying in Arrays and Strings

/* For strings */

struct user _data userl;
userl.account_number = 12;
strcpy(userl.first_name, "Matthew");
printf("%s\n", userl.first_name);

/* Copying... anything! (including arrays): */

size_t arr_sz = sizeof(arr) / sizeof(*arr);
memcpy(usexrl.some_array, arr, arr_sz),

CS 521: Systems Programming



Pointers to Structs

If you have a pointer to a struct, then members are
accessed via ‘arrow notation”

volid check _account(struct user_data *userl) {
userl->account_number = 100;

printf("%s's account number set to 100\n", userl->first_name);

}

/* Equivalent: */
(*userl) .account_number = 100;

Basically, you must dereference the struct before
accessing its members. -> isjust shorthand for this.

CS 521: Systems Programming



Declaring a struct

The most common place to put structs is at the top of your .c

file or in a header.
Yes, you can actually declare a struct inside a function!

One-time use; struct my_struct { ... } struct_name
(defines and creates a struct named 'struct_name’ in one
step)

You can forward declare a struct:

struct my_struct;

However, usage is limited: since we don't know anything
about the struct members, you can't refer to them

(mostly helpful when declaring a pointer to the struct or
functions that take the struct as a parameter...)

CS 521: Systems Programming

10



Struct Q&A

Q: Are structs passed like our regular primitives (by

value), or like arrays (essentially passed by reference)?
A: by value

Q: In other words, do we make copies when we pass a
struct around?
A Yes. Including when we return a struct!

Q: Can we have structs inside of structs?
A: Absolutely! But if the member is of the same type
then it needs to be a pointer.

CS 521: Systems Programming 11



Sitfields [1/2]

You can explicitly set the storage size of struct members to
a particular number of bits:

struct settings {
unsigned int discombobulate_thrusters : 1;
unsigned int hyperdrive_enabled : 1;
unsigned int anti_gravity_mode : 2;

}s

= This can save a lot of space!

= You will most likely only use bitfields with unsigned int .

CS 521: Systems Programming

12



Sitfields [2/2]

Some hardware devices use bits as on/off switches
Bitfields give us a way to model that in code without
doing a lot of low-level bit manipulation

Or, maybe you want to store a small number of states: if
you only have say, 4 possible options, then a 2-bit field
IS perfect

NOTE: sizeof() will not work on a bitfield.

CS 521: Systems Programming 13



Unions [1/2]

union IS a close relative of the struct;

union my_union {
int a;
float b;
struct user _data c;

}

With one HUGE difference: they only store a single
member.

Useful for managing chunks of data that could be
represented by multiple types

CS 521: Systems Programming

14



Unions [2/2]

union my_union {
int a;
float b;
struct user_data c;

Here, a, b,and c all have the same memory address.

sizeof (union my_union) will return the size of the largest
member (probably c in this case).

Nothing stops you from doing this with pointers instead
Create a struct, store an int / float inthe memory address

Unions are a well-defined, official way of achieving this

CS 521: Systems Programming

15



Wrapping up: Structs

Structs can be very useful for modeling objects or
groups of information

Remember that they are copied by value, just like our
primitive types

Consider passing large structs as “infout args” to

avoid the cost of copying during return

Generally they are stored in memory as they are written,

.e., the same as if you'd just declared the members

outside of a struct
However, the compiler is allowed to rearrange them!

CS 521: Systems Programming

16



Activity: Program Options

In the past labs, we used getopt to handle command
line options

Each option was probably represented by a variable

See if you can modify one of your labs to use a struct for
Its options!
Bonus: set up an instance of the struct with default
options

This allows you to quickly reset all options with the
assignment operator (e.g., structl = struct2 will
copy the values over)

CS 521: Systems Programming

17



