
Dynamic Memory Allocation

CS 521: Systems Programming

Lecture 11

▪ A running instance of a program is called a process

▪ Processes are allocated memory to store instructions,

string literals, constants, and more

▪ At run time, there are two places memory is allocated:

▪ Stack

▪ Heap

Memory Allocation

CS 521: Systems Programming 2

▪ Stack: Temporary data

▪ Made up of stack frames

▪ Heap: long-lived data

Memory Layout

CS 521: Systems Programming 3

▪ Thus far, we’ve allocated everything to the stack

▪ int a = 5;

▪ A good fit if we already know what data we’re working

with ahead of time

▪ If we know a user wants to enter, say, a number, we set

aside some memory for them to do it

▪ If we don’t know what data will be coming in ahead of

time, then we need to place it on the heap

The Stack

CS 521: Systems Programming 4

▪ What happens if we have a function that returns a

pointer to something that was stored on the stack?

▪ …

Demo: Returning Pointers on the Stack

CS 521: Systems Programming 5

▪ Each function call has a stack frame

▪ You may also see these called activation records

▪ The stack frame contains the local variables, return

address, and parameters

▪ In other words, the “execution environment” for each

function call

▪ Stack frames get pushed onto the stack with each

function call

▪ Unchecked recursive functions can lead to stack

overflow

Stack Frames [1/2]

CS 521: Systems Programming 6

int main(int argc, char *argv[]) {
 hello(1);
 return 0;
}

int hello(int i) {
 int j = i + 1;
 printf("Hello world!\n");
 return j;
}

Stack Frames [2/2]

CS 521: Systems Programming 7

We can cause a stack overflow by making the stack grow

too large.

Consider a recursive function:

int foo()
{
 return foo();
}

Stack Overflow

CS 521: Systems Programming 8

▪ The heap is where we dynamically allocate memory

▪ This is achieved using the malloc() function

▪ Allocating memory dynamically lets us cope with

changing inputs

▪ Perhaps a user wants to load a file: we can’t just

allocate a huge variable ahead of time and hope it fits

▪ How would we store a file in memory anyway? There’s

not exactly a “file” primitive type…

Heap [1/2]

CS 521: Systems Programming 9

▪ Use dynamic memory when:

▪ You need a large block of memory

▪ You want to keep a variable around for a long time

▪ Data that has been allocated via malloc is basically

global: if you know where it is in memory (with a pointer),

then you can manipulate it from anywhere

▪ …to be fair, that’s true with all pointers!

Heap [2/2]

CS 521: Systems Programming 10

#include <stdlib.h>
void *malloc(size_t size);

▪ This sets aside a block of memory for us to use

▪ We just need to give it the size

▪ The memory address of the new block is returned as a

pointer to anything (void *)

▪ Reminder: there is no guarantee the memory set aside

is zeroed out

Allocating Memory: malloc

CS 521: Systems Programming 11

#include <stdlib.h>
void free(void *ptr);

▪ Every malloc() must also have a corresponding

free()

▪ Without freeing the memory, you introduce memory

leaks

▪ Imagine doing this inside an infinite loop

▪ Or, maybe we don’t have to imagine it…

Freeing Memory: free

CS 521: Systems Programming 12

/* What happens here? */
int *i = malloc(sizeof(int));
*i = 3;
printf("%d\n", *i);
free(i);
printf("%d\n", *i);

Use After Free

CS 521: Systems Programming 13

This gives us a nice, zeroed-out memory block:

void *calloc(size_t nmemb, size_t size);

Note that calloc assumes you want to allocate more than

one member; you can always pass in nmemb=1 , though.

Allocate and Clear: calloc

CS 521: Systems Programming 14

You can request an existing block of memory to be resized:

void *realloc(void *ptr, size_t size);

WARNING: you must check the return address of

realloc , because it can relocate the memory block!

some_ptr = realloc(some_ptr, size);

Resizing an Allocation

CS 521: Systems Programming 15

▪ As you start working with dynamic memory allocation,

don’t forget to watch out for memory leaks

▪ And invalid accesses

▪ Luckily, just like gdb can help us debug, valgrind

helps us track down memory issues

Valgrind

CS 521: Systems Programming 16

▪ Let’s:

▪ dynamically allocate an int , double , and char

▪ dynamically allocate an array

▪ print its contents before initializing it

▪ resize the array

▪ free everything

Exercises

CS 521: Systems Programming 17

