CS 521: Systems Programming
Dynamic Memory Allocation

Lecture 11

Memory Allocation

A running instance of a program is called a process

Processes are allocated memory to store instructions,
string literals, constants, and more

At run time, there are two places memory is allocated:
Stack

Heap

CS 521: Systems Programming

Memory Layout

= Stack: Temporary data
= Made up of stack frames

- Heap: long-lived data

CS 521: Systems Programming

Memory Allocation

Stack

l Growth

Static Data

Literals

Instructions

Read & Write

Read-Only

The Stack

Thus far, we've allocated everything to the stack

int a = 5;

A good fit if we already know what data we're working
with ahead of time

If we know a user wants to enter, say, a number, we set
aside some memory for them to do it

If we don't know what data will be coming in ahead of
time, then we need to place it on the heap

CS 521: Systems Programming

Demo: Returning Pointers on the Stack

= What happens if we have a function that returns a
pointer to something that was stored on the stack?

CS 521: Systems Programming

Stack Frames [1/2]

Each function call has a stack frame
You may also see these called activation records

The stack frame contains the local variables, return

address, and parameters

In other words, the “execution environment” for each
function call

Stack frames get pushed onto the stack with each
function call

Unchecked recursive functions can lead to stack
overflow

CS 521: Systems Programming

Stack Frames [2/2]

int main(int argc, char *argv[]) {
hello(1);
return 0;

int hello(int 1) {
int j =1 + 1;
printf("Hello world!\n");
return j;

CS 521: Systems Programming

Stack Frame N - 1

Local Variables

Parameters

Return Address

Stack Frame N

Local Variables

Parameters

Return Address

Stack Growth

Stack Overflow

We can cause a stack overflow by making the stack grow
too large.

Consider a recursive function:

int foo()
{

}

return foo();

CS 521: Systems Programming

Heap [1/2]

The heap is where we dynamically allocate memory
This is achieved using the malloc() function

Allocating memory dynamically lets us cope with
changing inputs
Perhaps a user wants to load a file: we can't just
allocate a huge variable ahead of time and hope it fits
How would we store a file in memory anyway? There's
not exactly a "file” primitive type...

CS 521: Systems Programming

Heap [2/2]

Use dynamic memory when:
You need a large block of memory

You want to keep a variable around for a long time
Data that has been allocated via malloc is basically

global: if you know where it is in memory (with a pointer),

then you can manipulate it from anywhere
...to be fair, that’s true with all pointers!

CS 521: Systems Programming

10

Allocating Memory: malloc

#include <stdlib.h>
void *malloc(size_t size);

= This sets aside a block of memory for us to use
= We just need to give it the size

= The memory address of the new block is returned as a
pointer to anything (void *)

= Reminder: there is no guarantee the memory set aside
IS zeroed out

CS 521: Systems Programming 11

Freeing Memory: free

#include <stdlib.h>
void free(void *ptr);

= Every malloc() mustalso have a corresponding

free()

= Without freeing the memory, you introduce memory

leaks

= Imagine doing this inside an infinite loop
= Or, maybe we don't have to imagine it...

CS 521: Systems Programming

12

Use After Free

/* What happens here? */

int *1 = malloc(sizeof(int));
*3 = 3;

printf("%d\n", *1i);

free(i);

printf("%d\n", *i);

CS 521: Systems Programming

13

Allocate and Clear: calloc

This gives us a nice, zeroed-out memory block:

void *calloc(size_t nmemb, size_ t size);

Note that calloc assumes you want to allocate more than
one member; you can always pass in nmemb=1 , though.

CS 521: Systems Programming

14

Resizing an Allocation

You can reguest an existing block of memory to be resized:

void *realloc(void *ptr, size_t size);

WARNING: you must check the return address of
realloc , because it can relocate the memory block!

some_ptr = realloc(some_ptr, size);

CS 521: Systems Programming

15

Valgrind

As you start working with dynamic memory allocation,
don't forget to watch out for memory leaks

And invalid accesses

Luckily, just like gdb can help us debug, valgrind
helps us track down memory issues

CS 521: Systems Programming

16

—Xerclses

= Let's:
= dynamically allocate an int , double ,and char

= dynamically allocate an array
= print its contents before initializing it

= resize the array

= free everything

CS 521: Systems Programming

17

