
String Tokenization

CS 521: Systems Programming

Lecture 12

▪ Looking at Lab 4, you might be wondering if there are other

ways to deal with strings in C

▪ In particular, splitting them up (tokenizing them)

▪ Consider the string: “Hello, how are you today?”

▪ How can we retrieve each word individually?

▪ [Hello,] [how] [are] [you] [today?]

▪ In Java/Python, we have split()… Does C have an equivalent?

▪ The answer: yes

▪ The better answer: yes, but…

Tokenization

CS 521: Systems Programming 2

▪ strtok

▪ strtok_r

▪ strsep

▪ next_token

Approaches

CS 521: Systems Programming 3

▪ One of the classic approaches to string tokenization is

called strtok

▪ strtok works. But it does have some pretty major

issues.

strtok

CS 521: Systems Programming 4

/* Tokenize based on space and newline characters: */

char line[] = "Here is my amazing line of text!";
char *token = strtok(line, " \n");
while (token != NULL) {

/* do something with token */
/* then grab the next token: */

 printf("-> %s\n", token);
token = strtok(NULL, " \n");

}

Using strtok

CS 521: Systems Programming 5

▪ When it comes to C functions, strtok is one of the

stranger ones

▪ First, we pass in the string we want to tokenize

▪ After that, we pass in NULL and it gives us the next

token

▪ How does it even know what string to operate on?

▪ strtok maintains a global pointer to the start of the

most recent token

How strtok works [1/2]

CS 521: Systems Programming 6

▪ In C, we have global and local variables

▪ Globals are defined outside of any function

▪ For example, up above your main function

▪ Some C library functions even do this

▪ When you #include them, they get added to your

code

▪ C provides the static keyword to restrict global

variables’ scope to their compilation unit (file)

▪ This way we don’t pollute the global namespace

Global vs. Local State

CS 521: Systems Programming 7

▪ Beyond the strange pointer magic, we also need to know how

strtok splits strings up

▪ It scans through the string until it comes across one of the

defined delimiters

▪ The delimiter is replaced with \0

▪ Now printing the string only prints up to the NUL byte

▪ To move to the next token, strtok simply changes the pointer

to come after the NUL byte!

▪ We should sketch this out. The other approaches are roughly

the same

How strtok works [2/2]

CS 521: Systems Programming 8

▪ The global state means that strtok is NOT reentrant

▪ Can only be used in one place at a time

while (...) {
 strtok(...);
 while (...) {
 strtok(...); /* No!!!!!! */
 }
}

▪ Beyond not being reentrant, it’s also not thread safe.

▪ Use it in a library you’re writing? You have to warn EVERYONE

not to use strtok while you are �

Why strtok is bad

CS 521: Systems Programming 9

▪ There is a reentrant version of strtok available, though

not in all C libraries

▪ It’s a good choice to use by default (assuming it’s

available)

▪ Even if you don’t think you’ll need reentrancy or thread

safety

strtok_r

CS 521: Systems Programming 10

▪ Ding ding! Next contender: strsep

▪ strsep is non-standard, but still usually available in

most C libraries

▪ Let’s take a look at an example…

strsep

CS 521: Systems Programming 11

/* Tokenize based on space and newline characters: */
char *line = malloc(128 * sizeof(char));
strcpy(line, "Here is my amazing line of text!");

char *token;
while ((token = strsep(&line, " \n")) != NULL) {
 printf("-> %s\n", token);
}
/* DANGER: MEMORY LEAK! (and a sneaky one at that) */

▪ Huh, what’s different about this compared to strtok ?

▪ Also: strsep will produce empty strings for delimiters that are located next to

one another in the string, whereas strtok skips over all the delimiters

Using strsep

CS 521: Systems Programming 12

▪ Our next option is next_token . It is NOT part of any C

library, but quite commonly used:

▪ (there’s a copy on the schedule page)

/* Tokenize based on space and newline characters: */

char str[] = "Here is my amazing line of text!";
char *next_tok = str;
char *curr_tok;
while ((curr_tok = next_token(&next_tok, " \n")) != NULL) {
 printf("-> %s\n", curr_tok);
}

next_token [1/2]

CS 521: Systems Programming 13

▪ Replicates strtok using strspn and strcspn
▪ Will skip over several delimiters in sequence rather

than returning empty strings like strsep

▪ Thread safe, reentrant

▪ You have to include it manually in your project �

next_token [2/2]

CS 521: Systems Programming 14

