
Data Structures: Linked Lists

CS 521: Systems Programming

Lecture 13

▪ We probably all know linked lists already, and they tend

to be one of those things programmers implement early

on in their careers!

▪ Linked lists work particularly well in C

▪ We can incrementally allocate memory for the list

items

▪ Inserting new items is trivial

Linked Lists

CS 521: Systems Programming 2

A Basic Linked List

CS 521: Systems Programming 3

▪ Let’s build a simple linked list in class, in teams of up to 3

students.

▪ We’ll regroup to see how folks approached this

Programming Break

CS 521: Systems Programming 4

struct list_node {
 int data;
 struct list_node *next;
};

▪ We’ll start with a pointer to the head of the list

▪ Then we have our list elements…

▪ How should we represent a list element?

▪ Using a struct , we can hold data and a pointer to the

next struct in the chain

(singly-linked list)

Implementation [1/2]

CS 521: Systems Programming 5

▪ Each struct maintains a next pointer to another struct

▪ Once we hit NULL we know we’ve reached the end of

the list

▪ We can also add a prev pointer to create a doubly-

linked list

▪ Additionally a tail pointer can be useful to allow nodes

to be added at the beginning or end

Implementation [2/2]

CS 521: Systems Programming 6

▪ Linked lists tend to be compared to arrays (or things like

ArrayLists)

▪ They really aren’t meant for the same purpose,

though

▪ A linked list is great when you will be adding or removing

many items

▪ Don’t need to shift things around in memory or resize

allocations

▪ Linked lists are BAD if you will search them frequently or

want to access them via indexes

Motivation: Why Linked Lists?

CS 521: Systems Programming 7

▪ Allocate memory for the new node

▪ Update the new node’s data/value

▪ Set its next pointer to the current head

▪ Update the head pointer

▪ Should now point to the newly-inserted node

▪ How do we do this? Can it be done with a single

pointer?

Insert

CS 521: Systems Programming 8

▪ Use a temporary variable to store the current node

▪ Start with current = head

▪ While the current node isn’t NULL :

▪ Print its value

▪ Move to the next node

Print [1/2]

CS 521: Systems Programming 9

void print(struct list_node* head_p) {
 struct list_node *curr = head_p;
 while (curr != NULL) {
 printf("%d -> ", curr->data);
 curr = curr->next;
 }
 printf("\n");
}

Print [2/2]

CS 521: Systems Programming 10

Delete [1/2]

CS 521: Systems Programming 11

▪ Find the node in question

▪ Update the previous node’s next pointer

▪ Remember: in C, we have to take care of freeing

memory ourselves!

▪ What happens if we delete the head or tail?

Delete [2/2]

CS 521: Systems Programming 12

▪ Loop through, checking every element

▪

▪ Stop once you find the element you’re looking for

Search

O(n)

CS 521: Systems Programming 13

▪ Use what we already know about linked lists to make a

memory allocator

▪ When The user frees a block of memory, add it to the

free list – a linked list of free blocks!

▪ When doing a memory allocation, scan through the free

list first to see if a block can be reused

▪ If one is available, return it!

Our Plan

CS 521: Systems Programming 14

