CS 521: Systems Programming
Data Structures: Linked Lists

Lecture 13



Linked Lists

We probably all know linked lists already, and they tend

to be one of those things programmers implement early
on in their careers!

Linked lists work particularly well in C

We can incrementally allocate memory for the list
items

Inserting new items is trivial

CS 521: Systems Programming



A Basic Linked List

Head

CS 521: Systems Programming

— NULL




Programming Break

= Let's build a simple linked list in class, in teams of up to 3
students.

= We'll regroup to see how folks approached this

CS 521: Systems Programming



lmplementation [1/2]

struct list _node {
int data;
struct list_node *next;

}i
= We'll start with a pointer to the head of the list

= Then we have our list elements...
= How should we represent a list element?

= Usinga struct , we can hold data and a pointer to the
next struct Inthe chain

(singly-linked list)

CS 521: Systems Programming



Implementation [2/2]

Each struct maintains a next pointer to another struct

Once we hit NULL we know we've reached the end of
the list
We can also add a prev pointer to create a doubly-

linked list
Additionally a tail pointer can be useful to allow nodes

to be added at the beginning or end

CS 521: Systems Programming



Motivation: Why Linked Lists?

Linked lists tend to be compared to arrays (or things like
ArrayLists)

They really aren’t meant for the same purpose,

though
A linked list is great when you will be adding or removing

many items
Don't need to shift things around in memory or resize
allocations

Linked lists are BAD if you will search them frequently or
want to access them via indexes

CS 521: Systems Programming



INnsert

Allocate memory for the new node
Update the new node’s data/value
Set its next pointer to the current head

Update the head pointer
Should now point to the newly-inserted node

How do we do this? Can it be done with a single
pointer?

CS 521: Systems Programming



Print [1/2]

= Use atemporary variable to store the current node
= Start with current = head

= While the current node isn't NULL :
= Printits value

= Move to the next node

CS 521: Systems Programming



Print [2/2]

vold print(struct list_node* head_p) {
struct list_node *curr = head_p;
while (curr !'= NULL) {
printf("%d -> ", curr->data);
CUrr = curr->next;

}
printf("\n");

CS 521: Systems Programming

10



Delete [1/2]

Head

Deleting:

CS 521: Systems Programming

— NULL

11



Delete [2/2]

Find the node in question
Update the previous node’s next pointer

Remember: in C, we have to take care of freeing
memory ourselves!

What happens if we delete the head or tail?

CS 521: Systems Programming

12



Search

= Loop through, checking every element
- O(n)

= Stop once you find the element you're looking for

CS 521: Systems Programming

13



Our Plan

Use what we already know about linked lists to make a
memory allocator

When The user frees a block of memory, add it to the
free list—a linked list of free blocks!

When doing a memory allocation, scan through the free

list first to see If a block can be reused
If one is available, return it!

CS 521: Systems Programming

14



