CS 521: Systems Programming
System Calls and Processes

Lecture 14

Today's Schedule

= System Calls

= Processes

CS 521: Systems Programming

Today's Schedule

- System Calls

= Processes

CS 521: Systems Programming

Virtualizing the CPU

Our operating system (Linux, macOS, Windows, etc.), or
OS, virtualizes the CPU to allow multiple programs to run

concurrently
...or at least with the illusion of concurrency

even if we only have one physical CPU / core

It switches between processes quickly to give them all a
chance to use the hardware resources

If we are the OS, how can we run other programs...
within our program??

CS 521: Systems Programming

—xecution Strategies

To let a program run another program, we have a couple
options:

Execute its instructions directly, giving it full control

Read the program’s instructions, interpret them to

make sure they're safe, then execute them
OS designers came to a compromise between these

two extremes
For certain (safe) operations, processes are given full
access to the CPU/hardware!

Some privileged operations are not allowed

CS 521: Systems Programming

System Calls

These privileged operations are system calls

System calls include performing I/O, setting the current
time, or launching other processes (fork!)

Instructions (in your program binary) are flagged with a
permission level

This is where we derive the division between two halves

of the OS:
User space

Kernel space (kernel = core of the OS)

CS 521: Systems Programming

System Calls

CS 521: Systems Programming

Process
A
User Space
Kernel Space
Y
Kernel Hardware

Overhead

Using the kernel as an intermediary does have
downsides

Still slower than executing instructions directly

This cost is called overhead, the amount of extra time

spent in kernel space
Many privileged operations will be executed twice,

once in each context

CS 521: Systems Programming

Portability

When you're writing general-purpose C programs, it is
recommended to avoid system calls (if possible)

(e.g., use fread(3) instead of read(2))
While many Unix-like OS implement a standard set of
system calls (defined by POSIX) you can't assume

they're available everywhere
Linux supports clone, getdents ,and many others...
but macOS does not.

Windows is not Unix-like, so it may not support any of
the common system calls

CS 521: Systems Programming

Using System Calls

You've already seen some system calls in Project 1!

opendir , readdir , closedir

The C standard does NOT assume that all systems
will have the concept of a directory/folder hierarchy!

Try compiling P1 on Windows, and you might be out of
luck (unless you're using WSL, Cygwin, etc.)

CS 521: Systems Programming

10

Tracing System Calls

You can install strace onyour VM to monitor system
calls as processes run (see dtrace onamac)

strace 1s
Prints each system call in the order they are executed
Memory allocation, opening files, etc
Helpful: filtering
strace -e trace=file 1s

(only prints system calls that deal with files)

CS 521: Systems Programming

11

|[dentifying System Calls

= System calls will look exactly the same as regular C
functions in your code

= S0 how do we know which is which?

= Usually the best way is the man pages!
= Section 2 is system calls

= Section 3 is the C library

" man 2 xyz VS man 3 Xyz

CS 521: Systems Programming

12

s it actually a syscall?

Sometimes the POSIX APl maps directly to underlying

system calls
So you'll call a C library function named X, which then
makes a system call X

A good example: stat()
Gets information about files

See: man 2 stat VS man 3 stat

On Linux, readdir isimplemented via getdents()
One more layer of abstraction

CS 521: Systems Programming

13

System Call Workflow: Is

()
O
©
Q :
w ls my_dir
@
(%2]
D
4
getdents()
()
(@)
©
o
N
E l
=
v File System (ext4): read() Block
%
(OS Kernel getdents () Device (/devisdal)

CS 521: Systems Programming

Tracing stat

o 1s my _dir
O
©
o
n
o) \4
2]
D
stat()
\
o stat()
(6]
©
o
n
o \d
o
X (OS Kernel

File System (ext4):
stat()

read() Block
Device (/dev/sdal)

CS 521: Systems Programming

15

Demo: Tracing readdir

CS 521: Systems Programming

16

Overhead

All these function calls will definitely add overhead

However, this overhead is seen as a worthy trade-off:

without it we'd have:
Processes running amok
(crashing our system, probably)

Security issues
A much more brittle API for creating our programs

CS 521: Systems Programming

17

Today's Schedule

= System Calls

= Processes

CS 521: Systems Programming

18

~rom Program to Process

When a program is executed, the operating system
reads its static data from the disk and copies it into main

memaory
Program instructions, string literals, binary data

A process ID (PID) is assigned
Space is allocated for the stack and heap

Streams are initialized
stdout, stderr, stdin

Run-time permissions are applied

CS 521: Systems Programming

19

Process Memory Layout

Processes are given a zeroed out
virtual address space rather than

accessing main memory directly
Prevents viewing/changing other
process data

Makes memory allocation and

management simpler
Processes are still allowed to
communicate, however, via inter-
process communication (IPC)
mechanisms

CS 521: Systems Programming

Memory Allocation

Stack

l Growth

Static Data

Literals

Instructions

Read & Write

Read-Only

20

Inspecting the System

Processes are limited to virtualized views of the
hardware, but they are still able to inspect it

Memory, CPU, disk availability and usage
Other process names and command lines
Logged in users

Hardware specs, serial numbers, etc.

This is usually good, especially in shared environments!

CS 521: Systems Programming

21

Demo: systemctl, ps, ...

CS 521: Systems Programming

22

Inspecting the System

[malensek@ruby:~]1% w
23:11:06 up 1 day, 7:57, 11 users, 1load average: 16.07, 15.17, 11.34

USER TTY LOGIN@ IDLE JCPU PCPU WHAT

mal pts/0 07:16 14:37m 0.07s ©.07s -bash

zoe pts/1 20:04 3:06m ©.43s 0.38s vim output/file-0
wash pts/2 23:00 4:57 ©0.09s 0.05s vim Makefile
inara pts/3 21:52 1:08m ©.82s ©.79s /usr/bin/python2
jayne pts/4 23:10 12.00s ©.03s 0.03s -bash

malensek pts/5 23:11 0.00s ©0.10s 0.04s w

CS 521: Systems Programming

Processes

We also touched on processes before
Processes are created with the fork function
This creates a clone of an existing process

After creating the clone, we know two things:
Which process is the parent

Which process is the child

Logic branches from here, allowing the two processes
to do different work

CS 521: Systems Programming

24

Dealing with Clones

The cloning approach is particularly nice if you want to
make your application work on multiple CPUs

It doesn't quite help us if we want to launch a completely
different process, though

For instance, our program wants to start the top
command
There is another function to accomplish this: exec

CS 521: Systems Programming 25

execl

The exec family of functions allows us to launch other
applications

exec replaces the memory space of a clone with a new
program and begins its execution

After fork() :copy of my_program

After exec() :separate process running top ... 0Or
whatever you wanted to run!

CS 521: Systems Programming

26

Demo: fork + exec

CS 521: Systems Programming

27

Why Split fork + exec?

Why not just have a nice C function called

launch_program (or something like that) instead?

Or in other words: why does this need to be broken
iINnto two steps?

Advantages of operating this way:
While the new process is still a clone, it can set up the
target environment for the new application

No restriction on which process will be replaced
(could be the parent or child... usually child)

CS 521: Systems Programming

28

Setting up the Environment

The new process can inherit several aspects of its
predecessor
try doinga chdir before executing the child

Environment variables: the system path, current working
directory, global program options

Redirection: the new process may be set up to receive

iINnput on its stdin stream from the parent process
Pipes in the shell

CS 521: Systems Programming 29

Demo: env

CS 521: Systems Programming

30

Taking a Step Back

Okay, so we've talked about system calls. But why
should we care?
These details are not abstracted away from us like
they are in Java, Python, etc.

System calls mean more overhead in our programs —

If you can do something in user space, you'll get
better performance

And what about processes?

What we've covered today already gives us the basic
building blocks for parallel programming

CS 521: Systems Programming 31

