
System Calls and Processes

CS 521: Systems Programming

Lecture 14

▪ System Calls

▪ Processes

Today’s Schedule

CS 521: Systems Programming 2

▪ System Calls

▪ Processes

Today’s Schedule

CS 521: Systems Programming 3

▪ Our operating system (Linux, macOS, Windows, etc.), or

OS, virtualizes the CPU to allow multiple programs to run

concurrently

▪ …or at least with the illusion of concurrency

▪ even if we only have one physical CPU / core

▪ It switches between processes quickly to give them all a

chance to use the hardware resources

▪ If we are the OS, how can we run other programs…

within our program?

Virtualizing the CPU

CS 521: Systems Programming 4

▪ To let a program run another program, we have a couple

options:

▪ Execute its instructions directly, giving it full control

▪ Read the program’s instructions, interpret them to

make sure they’re safe, then execute them

▪ OS designers came to a compromise between these

two extremes

▪ For certain (safe) operations, processes are given full

access to the CPU/hardware!

▪ Some privileged operations are not allowed

Execution Strategies

CS 521: Systems Programming 5

▪ These privileged operations are system calls

▪ System calls include performing I/O, setting the current

time, or launching other processes (fork!)

▪ Instructions (in your program binary) are flagged with a

permission level

▪ This is where we derive the division between two halves

of the OS:

▪ User space

▪ Kernel space (kernel = core of the OS)

System Calls

CS 521: Systems Programming 6

System Calls

CS 521: Systems Programming 7

▪ Using the kernel as an intermediary does have

downsides

▪ Still slower than executing instructions directly

▪ This cost is called overhead, the amount of extra time

spent in kernel space

▪ Many privileged operations will be executed twice,

once in each context

Overhead

CS 521: Systems Programming 8

▪ When you’re writing general-purpose C programs, it is

recommended to avoid system calls (if possible)

▪ (e.g., use fread(3) instead of read(2))

▪ While many Unix-like OS implement a standard set of

system calls (defined by POSIX) you can’t assume

they’re available everywhere

▪ Linux supports clone , getdents , and many others…

but macOS does not.

▪ Windows is not Unix-like, so it may not support any of

the common system calls

Portability

CS 521: Systems Programming 9

▪ You’ve already seen some system calls in Project 1!

▪ opendir , readdir , closedir

▪ The C standard does NOT assume that all systems

will have the concept of a directory/folder hierarchy!

▪ Try compiling P1 on Windows, and you might be out of

luck (unless you’re using WSL, Cygwin, etc.)

Using System Calls

CS 521: Systems Programming 10

▪ You can install strace on your VM to monitor system

calls as processes run (see dtrace on a mac)

▪ strace ls
▪ Prints each system call in the order they are executed

▪ Memory allocation, opening files, etc

▪ Helpful: filtering

▪ strace -e trace=file ls

▪ (only prints system calls that deal with files)

Tracing System Calls

CS 521: Systems Programming 11

▪ System calls will look exactly the same as regular C

functions in your code

▪ So how do we know which is which?

▪ Usually the best way is the man pages!

▪ Section 2 is system calls

▪ Section 3 is the C library

▪ man 2 xyz vs man 3 xyz

Identifying System Calls

CS 521: Systems Programming 12

▪ Sometimes the POSIX API maps directly to underlying

system calls

▪ So you’ll call a C library function named X, which then

makes a system call X

▪ A good example: stat()
▪ Gets information about files

▪ See: man 2 stat vs man 3 stat

▪ On Linux, readdir is implemented via getdents()
▪ One more layer of abstraction

Is it actually a syscall?

CS 521: Systems Programming 13

System Call Workflow: ls

CS 521: Systems Programming 14

Tracing stat

CS 521: Systems Programming 15

Demo: Tracing readdir

CS 521: Systems Programming 16

▪ All these function calls will definitely add overhead

▪ However, this overhead is seen as a worthy trade-off:

without it we’d have:

▪ Processes running amok

(crashing our system, probably)

▪ Security issues

▪ A much more brittle API for creating our programs

Overhead

CS 521: Systems Programming 17

▪ System Calls

▪ Processes

Today’s Schedule

CS 521: Systems Programming 18

▪ When a program is executed, the operating system

reads its static data from the disk and copies it into main

memory

▪ Program instructions, string literals, binary data

▪ A process ID (PID) is assigned

▪ Space is allocated for the stack and heap

▪ Streams are initialized

▪ stdout, stderr, stdin

▪ Run-time permissions are applied

From Program to Process

CS 521: Systems Programming 19

▪ Processes are given a zeroed out

virtual address space rather than

accessing main memory directly

▪ Prevents viewing/changing other

process data

▪ Makes memory allocation and

management simpler

▪ Processes are still allowed to

communicate, however, via inter-

process communication (IPC)

mechanisms

Process Memory Layout

CS 521: Systems Programming 20

▪ Processes are limited to virtualized views of the

hardware, but they are still able to inspect it

▪ Memory, CPU, disk availability and usage

▪ Other process names and command lines

▪ Logged in users

▪ Hardware specs, serial numbers, etc.

▪ This is usually good, especially in shared environments!

Inspecting the System

CS 521: Systems Programming 21

Demo: systemctl, ps, …

CS 521: Systems Programming 22

[malensek@ruby:~]$ w
 23:11:06 up 1 day, 7:57, 11 users, load average: 16.07, 15.17, 11.34
USER TTY LOGIN@ IDLE JCPU PCPU WHAT
mal pts/0 07:16 14:37m 0.07s 0.07s -bash
zoe pts/1 20:04 3:06m 0.43s 0.38s vim output/file-0
wash pts/2 23:00 4:57 0.09s 0.05s vim Makefile
inara pts/3 21:52 1:08m 0.82s 0.79s /usr/bin/python2
jayne pts/4 23:10 12.00s 0.03s 0.03s -bash
malensek pts/5 23:11 0.00s 0.10s 0.04s w

Inspecting the System

CS 521: Systems Programming 23

▪ We also touched on processes before

▪ Processes are created with the fork function

▪ This creates a clone of an existing process

▪ After creating the clone, we know two things:

▪ Which process is the parent

▪ Which process is the child

▪ Logic branches from here, allowing the two processes

to do different work

Processes

CS 521: Systems Programming 24

▪ The cloning approach is particularly nice if you want to

make your application work on multiple CPUs

▪ It doesn’t quite help us if we want to launch a completely

different process, though

▪ For instance, our program wants to start the top

command

▪ There is another function to accomplish this: exec

Dealing with Clones

CS 521: Systems Programming 25

▪ The exec family of functions allows us to launch other

applications

▪ exec replaces the memory space of a clone with a new

program and begins its execution

▪ After fork() : copy of my_program

▪ After exec() : separate process running top … or

whatever you wanted to run!

exec

CS 521: Systems Programming 26

Demo: fork + exec

CS 521: Systems Programming 27

▪ Why not just have a nice C function called

launch_program (or something like that) instead?

▪ Or in other words: why does this need to be broken

into two steps?

▪ Advantages of operating this way:

▪ While the new process is still a clone, it can set up the

target environment for the new application

▪ No restriction on which process will be replaced

(could be the parent or child… usually child)

Why Split fork + exec?

CS 521: Systems Programming 28

▪ The new process can inherit several aspects of its

predecessor

▪ try doing a chdir before executing the child

▪ Environment variables: the system path, current working

directory, global program options

▪ Redirection: the new process may be set up to receive

input on its stdin stream from the parent process

▪ Pipes in the shell

Setting up the Environment

CS 521: Systems Programming 29

Demo: env

CS 521: Systems Programming 30

▪ Okay, so we’ve talked about system calls. But why

should we care?

▪ These details are not abstracted away from us like

they are in Java, Python, etc.

▪ System calls mean more overhead in our programs –

if you can do something in user space, you’ll get

better performance

▪ And what about processes?

▪ What we’ve covered today already gives us the basic

building blocks for parallel programming

Taking a Step Back

CS 521: Systems Programming 31

