CS 521: Systems Programming
Inter-Process Communication

Lecture 15

Inter-Process Communication

We previously discussed how the host OS tries its best

to isolate processes
Processes should not be able to interfere with one

another

To do privileged operations, we need to go through
the kernel with system calls

However, it's often useful to have processes

communicate
Inter-Process Communication (IPC)

IPC gives us safe, well-defined ways to communicate

CS 521: Systems Programming

Why IPC?

Processes need to share data
‘Data’ can mean a lot of things:
Plain text
An image, video, program
A message containing commands or other types of
information
Without a well-defined interface, getting processes to
communicate descends into madness

CS 521: Systems Programming

An Example

1. You double-click a web link saved to your desktop

2. The OS determines which program is responsible for
handling HT TP/S URIs

3. The program s launched if it isn't already running
4. The OS delivers a message to the program:

5. OPEN https://[google.com

CS 521: Systems Programming

https://google.com/

Types of [PC

We will cover three types of IPC in this class (although

there are many others):
Files

Signals
Pipes
You might be surprised that files could be considered a

form of IPC, but it's actually one of the easiest and
simplest ways to communicate between processes!

CS 521: Systems Programming

Today's Schedule

= Files
= Signals

= Pipes

CS 521: Systems Programming

Today's Schedule

- Files
= Signals

= Pipes

CS 521: Systems Programming

Files

Save a file to disk with one application, open it with

another application
Needs a file system to make this happen

On our VMs, we're using ext4 . A recent Mac might
use apfs ,and Windows NTFS (or maybe XFAT ...

What happens when two applications open the same
file”?
Coordinate via file locks

Can lock an entire file or only a portion

CS 521: Systems Programming

Opening a File

We have used fopen() to openand read files
Lower-level option: open()
This is a system call

(fopen from the C library calls open on Linux)

open returns a file descriptor — an integer that

represents the opened file
This decouples the file's absolute path in the file
system (e.g., /usr/bin/something) from I/O
operations

CS 521: Systems Programming

Flle Descriptors

stdin , stdout ,and stderr have file descriptors

The file abstraction is used thoroughly in Unix systems
(see /dev for devices)

Once you've opened a file descriptor, you can read/write
the contents of the file or even redirect the stream
somewhere else

CS 521: Systems Programming 10

Redirecting Streams: dup?2

dup2 allows us to redirect streams

int dup2(int fildes, int fildes2);
Let's say we want to make our standard output stream
go to a file we just opened

We'll do:
dup2(fd, STDOUT_FILENO);

This also deallocates (closes) the second fd
You won't see text printing directly to your terminal
anymore

CS 521: Systems Programming 11

—xample: Redirecting to a File

Combine open and dup2 :
int output = open("output.txt",
O_CREAT | O_WRONLY | O_TRUNC, 0666);

dup2(output, STDOUT_FILENO),

This is exactly what our shell does when we
use < and >

cat /etc/passwd > some_file
Opens “some_file" and then redirects the output of
the child process to that file instead!

CS 521: Systems Programming

12

Redirection Workflow

Let's say your shell encounters > inthe command line...

Use fork to create a new process
Open the file that comes after the >
Redirect stdout to the file with dup2

Call exec to execute the program
This is part of the reason why fork and exec are
split into two separate parts

CS 521: Systems Programming

13

Demo: 10-redir.c

CS 521: Systems Programming

14

Today's Schedule

= Files
- Signals

= Pipes

CS 521: Systems Programming

15

Signals

Signals are software-based interrupts
Basically a notification sent to the process

The kernel uses signals to inform processes when
events occur

Handling a signal causes a jump in your program’s logic
to a signal handler

You can use a null signal handler to ignore particular
signals

CS 521: Systems Programming

16

Demo: signal.c

CS 521: Systems Programming

17

-vents

What kind of events are reported via signals?
It depends on the kernel

To find out, use:
/bin/kill -1

Wait, what”!
That's right: Kill is used to send signals to processes

It doesn't necessarily kil the process in doing so
But it can!

CS 521: Systems Programming

18

Terminating a Process

You've already been using signals quite a bit (but maybe
didn't realize)
Ever hit Ctrl+C to stop a running program?

it sends SIGINT to the process
Each signal is prefixed with SIG

Processes can choose how to deal with signals when
they are received
Including ignoring them... usually

CS 521: Systems Programming

19

Demo: unkillable.c

CS 521: Systems Programming

20

Special Signals

SIGSTOP and SIGKILL cannot be caught or ignored

SIGSTOP - stops (pauses) the process: Ctrl+Z
SIGCONT tells a paused process to continue

SIGKILL —terminates the process, no questions asked
You may have heard of kill -9 <pid>

9 is SIGKILL

CS 521: Systems Programming

21

Using kill -9

Occasionally a process
will not respond to a
SIGTERM, SIGINT, etc.

This is the appropriate
time to use SIGKILL

CS 521: Systems Programming

1IMET0 GO

YoU HAVE TO COME
WITH M ?

OR ELSE T
wHATR (7 |

(@)RAPH.COMIC

YES | PSKED....NO,HE'S BEING
STUBBORN.... NO 1M NOT GOING
TO CARRY Him/

!

22

Signal Handling

Set up a signal handler with signal :

signal (SIGINT, sigint_handler);
Will call sigint_handler everytime a SIGINT is
received

Then implement the signal handling logic:

void sigint_handler(int signo) { ... }

CS 521: Systems Programming

23

OS Signal Transmission Process

1. First, a process initiates the signal
= Terminal Emulator: user pressed Ctrl+C, so

= | should send SIGTERM to the current process
2. The kernel receives the signal request

3. Permissions are verified
= Can this user really send a signal to PID 32417

4. The signal is delivered to the process

CS 521: Systems Programming

24

Reacting to a Signal

If a process is busy doing something, it will be
interrupted by the signal

Jumps from the current instruction to the signal handler
(or performs the default operation if there is no signal
handler)

Jumps back to where it was when the handler logic
completes

CS 521: Systems Programming

25

Segmentation Violation

= Our good friend, the segmentation violation (aka

segfault) is also a signal
= SIGSEGV

= Bus error; SIGBUS

= S0 if segfaults are getting you down, try blocking them!
= What could go wrong?!

CS 521: Systems Programming

26

Sending a Signal

Not all signals are sent via key combinations from the
shell... We can send them programmatically or via the
command line

Let's send a SIGUSR1T signal to process 324
kill -s SIGUSR1 324

Simple as that!

Or, in C:
int kill(pid_t pid, int signum);

CS 521: Systems Programming

27

Tracking Children

SIGCHLD is sent to the parent of a child process when it
exits, is interrupted, or resumes execution

Useful in scenarios where the parent process needs to

be notified about child events
or, in other words, when the parent is not already
wait() ing on the child

Job listin the shell: when SIGCHLD is received, do a
non-blocking waitpid to determine which process
exited and remove it from the list (if backgrounded)

CS 521: Systems Programming 28

Today's Schedule

= Files
= Signals

= Pipes

CS 521: Systems Programming

29

Pipes [1/2]

Pipes are a common way for programs to communicate
on Unix systems

cat /etc/something | sort | head -n5

Most useful for sharing unstructured data (such a text)
between processes

They work like how they sound: if you want to send data
to another process, send it through the pipe

CS 521: Systems Programming 30

Pipes [2/2]

Pipes are one of the fundamental forms of Unix [PC
With pipes, we can “glue” several utilities together:
grep neato file.txt | sort

This will search for "neato” in file.txt and print each

match
Next, these matches get sent over to the ‘sort’
utility

Just like with I/O redirection, this is facilitated by dup2

CS 521: Systems Programming 31

INn the Shell

As we've seen, pipes are used frequently in the shell

We can mix and match different utilities, and they all
work well together

Awesome!
Some genius must have designed all these programs to

work this way, right?
Well, no. They all just read from stdin and then write
to stdout (@nd stderr)

No coordination required between developers

CS 521: Systems Programming 32

Sulltins vs. External Programs

When you enter ‘Is" in your shell, you're running a
program

This functionality is NOT built into your shell. Bash
simply finds and runs the ‘Is’ program. That's it!

There are some shell ‘commands” that actually aren't

programs, called built-ins
history

exit

cd —why does this need to be a built-in?

CS 521: Systems Programming 33

Going to the Source

= | have posted a video from Bell Labs on the schedule
that discusses several design aspects of Unix

= Discussion on pipes starts right around the 5 minute
mark

CS 521: Systems Programming

34

The pipe function

Now back to pipes: we can create them with the pipel)

function
Returns a set of file descriptors: the input and output
sides of the pipe

Pipes aren't very useful if they aren't connected to

anything, though
We can do this by fork() ing another process

CS 521: Systems Programming 35

PiIping to Another Process

After calling fork() , both processes have a copy of the
pipe file descriptors

Pipes only operate in one direction, though, so we need

to close the appropriate ends of the pipe
You can think of a forked() pipe as one with four ends:
two input and output ends each

We eliminate the ends we don't need to control the
direction of data flow

Amazing ASCIl art drawing: >---<

CS 521: Systems Programming 36

Controlling Flow

= To control data flow through the pipe, we close the ends
we won't use

= For example:
= Child process closes FD 0 and reads from FD 1

= Parent process closes FD 1 and writesto FD O

CS 521: Systems Programming

37

Async Process Creation

You may be wondering: what good are pipes when we
have to start all the cooperating processes?

There's actually another option: FIFOs, aka named
pipes

Create with the mkfifo command, then open as you
would a regular file descriptor

CS 521: Systems Programming

38

Redirecting Streams to a Pipe

= Let's say we want to make our standard output stream
go through the pipe we just created
= int fd[2];
pipe(fd);
= We'll do:
= dup2(fd[@], STDOUT_FILENO);

CS 521: Systems Programming 39

Wrapping Up

We've seen only a few possibilities for [PC!

Another option: sockets
Communication... even over the network!

Many Unix systems use D-Bus for more advanced [PC

Windows has a similar concept: Windows Messages

Windows applications are event based
Almost everything that happens on Windows has
an event associated with it (WM_MOUSEMOVE ,
changing resolution, etc.)

CS 521: Systems Programming

40

Fun: Undelivered Events

flh

TH\HHH

FZ

_ sl ! [)
blem ard need S ; l ' '
S e F“""“—_ ‘ﬁ e
- — Internet Explorer has encountered & problem and needs 5
i'ﬂl"ﬂmm“m i —— L m lo chose. ‘We ﬂ.r\e:lnlj!'{l’lh Irll:\ﬂll'l"d'l!ﬂ.!“ n:: g
—— —_—
1 0wt wene i B riddle: of something. Bhe indomabion you weee warking on
mmEEm R I
|n rr Plaaze tell Miciorolt about thiz probles.
m I e e craaled an emar iepar that pou can send ba help s mproes
i Imteirest Exploted. Wi il beal thes seport ax canhidenlisl snd sronpmous
[}
1 1 To see what data this emor ieport corkarns, cick bess
" . Send Ence Aeport | [DantSend |
P Send Eivor Fegal =
L
Inn -
—————a |
T I
T = -
biking an i] “
E l L]
[bz ermet Explorer
hmoiis,
Imternet Explorer haz encounts
_ =] b close. ‘We aie soiy fos the
CS 521: Systems Programming

41

