
Parallel Programming

CS 521: Systems Programming

Lecture 17

▪ We have a few weeks left in the semester!

▪ My original plan was to have the class vote on the final

concepts we’d cover…

▪ …but I realized that we can cover everything in the

time we have left.

▪ I will give you choices for the final labs/project.

▪ Final topics:

▪ Rust, Parallel Programming, Sockets.

Before We Start

CS 521: Systems Programming 2

▪ There’s a great resource for getting started with Rust:

Rustlings

▪ Interactive exercises you can do while you read the

Rust book

▪ Our next lab: complete Rustlings

▪ Our final project: incorporating parallel programming,

sockets, and either C or Rust

▪ Ok, so back to our regularly-scheduled topic: Threads!

Rust

CS 521: Systems Programming 3

https://github.com/rust-lang/rustlings
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/

▪ In computing, a thread is the smallest schedulable unit

of execution

▪ Your operating system has a scheduler that decides

when threads/processes will run

▪ Threads are essentially lightweight processes

▪ With fork , we created clones of a process

▪ With threads, a single process manages multiple

threads

Threads

CS 521: Systems Programming 4

▪ Threads are one of the most important concepts for

modern programmers to understand

▪ In the past, you could get away with writing serial

programs

▪ Today, we live in a world of asynchronous, multi-

threaded code

▪ Crucial for building fast, efficient applications

▪ Multi-threading is hard, but many

languages/frameworks are trying to address this

Why Learn Threads?

CS 521: Systems Programming 5

▪ In the best case scenario, doubling the number of

cores/CPUs/processing units will halve execution time

▪ In practice, this is difficult

▪ There is overhead associated with parallelism

▪ Amdahl’s law puts a bound on potential speedup:

▪ – speedup

▪ – parallelizable portion of the program

▪ – number of cores/CPUs/processing units

Amdahl’s Law [1/2]

S =N

(1−P)+

N
P

1

S

P

N

CS 521: Systems Programming 6

Amdahl’s Law [2/2]

CS 521: Systems Programming 7

▪ With fork , we simply cloned our parent process

▪ No data sharing between them

▪ With threads, each individual thread can be unique and

do something different

▪ …or you can make many threads that all do the same

thing

▪ Threads have a variety of ways to coordinate and

communicate

A Departure from Cloning

CS 521: Systems Programming 8

▪ ‘pthreads’ is short for POSIX Threads

▪ POSIX - Portable Operating System Interface

▪ (the spec most Unix-like operating systems follow)

▪ So… “Lightweight processes”… let’s unpack that.

▪ Created by processes to do some subset of the work

▪ In general, threads use shared memory to

communicate

▪ All the threads have access to global/heap variables

What are Threads?

CS 521: Systems Programming 9

▪ You may want your program

to do two things at the same

time

▪ For example, download a file

in one thread and show a

progress bar and dialog with

another

▪ User interfaces are often

multi-threaded

▪ Helps hide the fact that

CPUs can only do one thing

Use Cases [1/2]

CS 521: Systems Programming 10

▪ Games often have a main event loop and several sub

threads that handle:

▪ Graphics rendering

▪ Artificial Intelligence

▪ Responding to player inputs

▪ In a video encoder, you may split the video into multiple

regions and have each thread work on them individually

Use Cases [2/2]

CS 521: Systems Programming 11

▪ Recall: a process is an instance of a program

▪ Each process has:

▪ Binary instructions, data, memory

▪ File descriptors, permissions

▪ Stack, heap, registers

▪ Threads are very similar, but they share almost

everything with their parent process except for:

▪ Stack

▪ Registers

Stepping Back: Processes

CS 521: Systems Programming 12

▪ Since threads share the heap with their parent process,

we can share pointers to memory locations

▪ A thread can read and write data set up by its parent

process

▪ Sharing these resources also means that it’s faster to

create threads

▪ No need to allocate a new heap, set up permissions,

etc.

Sharing Data

CS 521: Systems Programming 13

▪ pthreads is just one way to manage lightweight execution

contexts

▪ Windows has its own threading model

▪ Languages have other features: Go has goroutines that

abstract away some threading details

▪ C#: async/await

▪ Futures

▪ Learning pthreads will help you understand how these models

work

▪ Java threads: basics are very similar to pthreads

Other Types of Threads

CS 521: Systems Programming 14

▪ As usual, we have a new #include!

#include <pthread.h>

▪ We also need to link against the pthreads library:

gcc file.c –pthread
▪ You might see -lpthread out in the wild, but modern

compilers expect -pthread instead

Getting Started with pthreads

CS 521: Systems Programming 15

▪ pthread_create

▪ pthread_join

▪ pthread_detach

▪ pthread_exit

Functions We’ll Cover Today

CS 521: Systems Programming 16

int pthread_create(
 pthread_t *thread,
 const pthread_attr_t *attr,
 void *(*start_routine)(void *),
 void *arg);

▪ thread – populated by pthread_create , contains thread information

▪ attr – scheduling attributes

▪ stack size, scheduling policies, etc.

▪ to use the defaults, pass in NULL

▪ start_routine – function to run (function pointer)

▪ arg – argument to the function (passed as a void *)

Creating a Thread

CS 521: Systems Programming 17

▪ What’s pthread_t, the type we used to create our array

of threads?

▪ This is considered an opaque type, defined internally by

the library

▪ It’s often just an integer that uniquely identifies the

thread, but we can’t rely on this

▪ For example, we shouldn’t print out a pthread_t

pthread_t

CS 521: Systems Programming 18

▪ The most important part of pthread_create is the start

routine

▪ This function is called by the pthread library as the

starting point for your thread

▪ Passed in as a function pointer

▪ Just like how they sound: they’re a pointer to a

specific function

▪ We did this with qsort comparators

The start_routine

CS 521: Systems Programming 19

▪ The last argument to pthread_create is “arg”

▪ This can be anything we want to pass to the thread

▪ One common pattern: pass in a thread “ID number”

(called a rank in parallel computing)

▪ Have threads coordinate based on these ranks (for

example, rank 0 may gather up the result(s) of the

computations from other ranks)

▪ Want to pass in more than one argument? Use a struct

Passing Arguments

CS 521: Systems Programming 20

int pthread_join(pthread_t thread, void **value_ptr);

▪ The pthread_join function waits for a pthread to finish

execution (when it calls return)

▪ The return value of the thread is stored in value_ptr

▪ This lets our main thread wait for all its children to finish

up before moving on

▪ Often used to coordinate shutting down the threads,

waiting for their results, and synchronizing logic

▪ Similar to wait() / waitpid()

Joining Threads

CS 521: Systems Programming 21

int pthread_detach(pthread_t thread);

▪ Normally, threads will continue to live on until they are

joined

▪ (even if they have exited)

▪ Joining cleans up the resources allocated to the thread

(such as its stack)

▪ Sometimes we can’t join threads. By detaching them,

we tell the OS to clean them up once they exit

Detaching Threads

CS 521: Systems Programming 22

▪ Any guesses what pthread_exit does?

▪ You’re right, it launches your default web browser!

▪ Note: if you’re skimming these slides to cram for an quiz later, that was only a joke

▪ pthread_exit also has a weird/handy property: if you

call it from the main thread, it won’t exit until the rest of

the threads are finished

▪ Nice if you want to wait for your workers to finish

▪ What happens if you just call exit() or return from

main?

pthread_exit

CS 521: Systems Programming 23

▪ In general, using multiple processes is simpler and

easier to implement

▪ Split up the problem, have the processes work on it

independently

▪ However, if the algorithm you are implementing requires

lots of communication or shared state, threads are a

better choice

▪ They are also faster to create and require fewer

system resources

Multi-Process or Multi-Thread?

CS 521: Systems Programming 24

▪ On Solaris, creating a process is 30x slower than

creating a thread, and context switches are 5x slower

▪ Each operating system has different overhead

associated with processes/threads

▪ Windows: huge process overhead. Use threads where

possible

▪ Linux: relatively low process creation overhead

Thread Creation Overhead

CS 521: Systems Programming 25

▪ Remember: single-threaded (or single-process)

applications cannot run on more than one CPU

▪ This impacts scalability: the ability of your algorithm to

run faster when given more resources

▪ Threads are a great way to take advantage of more

cores to carry out background tasks and make

applications more responsive

Scalability

CS 521: Systems Programming 26

▪ We’ve actually done a little bit of timing already this

semester

▪ The time command

▪ Not fine-grained

▪ We can only test how long it takes to run the entire

program

▪ What happens when we prompt for a value? What

about application startup time (from the OS)?

▪ We need to be able to track things at a finer level

Keeping Track of Time

CS 521: Systems Programming 27

▪ Do not use clock() .

▪ On Unix-based systems, gettimeofday() provides the

wall clock time, generally with precision

▪ Wall clock time: the actual time taken for something to

run

▪ As opposed to CPU time

▪ Check the output of top for CPU time

▪ #include <timer.h>

gettimeofday

1 μs

CS 521: Systems Programming 28

double get_time(void)
{
 struct timeval t;
 gettimeofday(&t, NULL);
 // Convert to ms before returning:
 return t.tv_sec + t.tv_usec / 1000000.0;
}

Timing

CS 521: Systems Programming 29

▪ To measure performance, we need something CPU-

intensive to do

▪ Printing ‘hello world’ ain’t gonna cut it

▪ How about estimating ? Sure, we could just look it up

and copy several digits into our code as a constant…

▪ But that sounds much too easy. This is CS 521!

▪ Instead, we can do this with something called the

Madhava–Leibniz series:

▪

Estimating π

π

1 − +3
1

 −5
1

 +7
1

 −9
1 ... = 4

π

CS 521: Systems Programming 30

▪

▪ The more iterations, the more accurate our estimate

gets…

▪ …however, please note that this is NOT a particularly

efficient method

▪ We’re just using it to make our CPUs burn

▪ We can split these iterations up across multiple

processes to speed things up

▪ pthreads to the rescue! We can look at a few

approaches…

Madhava-Leibniz

1 − +3
1 −5

1
 +7

1
 −9

1 ... = 4
π

CS 521: Systems Programming 31

