CS 521: Systems Programming
Parallel Programming

Lecture 17

Before We Start

We have a few weeks left in the semester!

My original plan was to have the class vote on the final
concepts we'd cover...

...but | realized that we can cover everything in the
time we have left.

| will give you choices for the final labs/project.

Final topics:
Rust, Parallel Programming, Sockets.

CS 521: Systems Programming

RUSt

There's a great resource for getting started with Rust:

Rustlings
Interactive exercises you can do while you read the
Rust book

Our next lab: complete Rustlings

Our final project: incorporating parallel programming,
sockets, and either C or Rust

Ok, so back to our regularly-scheduled topic: Threads!

CS 521: Systems Programming

https://github.com/rust-lang/rustlings
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/

Threads

In computing, a thread is the smallest schedulable unit

of execution
Your operating system has a scheduler that decides
when threads/processes will run

Threads are essentially lightweight processes
With fork , we created clones of a process

With threads, a single process manages multiple
threads

CS 521: Systems Programming

Why Learn Threads”

Threads are one of the most important concepts for
modern programmers to understand

In the past, you could get away with writing serial
programs

Today, we live in a world of asynchronous, multi-

threaded code
Crucial for building fast, efficient applications

Multi-threading is hard, but many
languages/frameworks are trying to address this

CS 521: Systems Programming

Amdahl's Law [1/2]

In the best case scenario, doubling the number of

cores/CPUs/processing units will halve execution time
In practice, this is difficult

There is overhead associated with parallelism

Amdahl's law puts a bound on potential speedup:

Sy = i p

(1-P)+Z%
S — speedup

P — parallelizable portion of the program

NN —number of cores/CPUs/processing units

CS 521: Systems Programming

Amdahl's Law [2/2]

Speedup

CS 521: Systems Programming

20

18

16

14

12

10

Amdahl's Law

Number of processors

/’///
//
/ Parallel portion
/ 50%
/A Y I N B P 75%
—— 90%
/ —— 95%
/
/
______________ VAR
/ /‘/./'
// 7
v
/-7
/7
/1.7
_______ _/'/______._.._-.._..T..—..—.-'-—-F-ﬁf""'"""'""'“'""'"“'"“"'“'““""‘""‘"""'“""""
Pt
- N < 0 © oN <t -] © N < g © N < [~}
-l (3] © N o () N [=2] [=}] =] @O
4§ b S 2 2 g 8 K
(o] N © tHD g

65536

A Departure from Cloning

With fork , we simply cloned our parent process
No data sharing between them

With threads, each individual thread can be unique and
do something different

...0r you can make many threads that all do the same
thing

Threads have a variety of ways to coordinate and
communicate

CS 521: Systems Programming

What are Threads?

‘pthreads’ is short for POSIX Threads
POSIX - Portable Operating System Interface

(the spec most Unix-like operating systems follow)
So... "Lightweight processes”... let's unpack that.
Created by processes to do some subset of the work

In general, threads use shared memory to
communicate
All the threads have access to global/heap variables

CS 521: Systems Programming

Use Cases [1/2]

You may want your program
to do two things at the same
time

For example, download a file
In one thread and show a
progress bar and dialog with
another

User interfaces are often

multi-threaded
Helps hide the fact that

CS 521: Systems Programming

22% of htm1aug3.exe Completed M= E3 |

Saving:
hitrn aug3. exe from uzers. skynet. be

&

E ztimated time left; 4 min 43 zec (415 KB of 1.81 MB copied]
Download ko E:syunkhhtrml aug3. exe

Transfer rate; AF3IKB/Sen

¥ Close this dialog box when download completes

{[mi=y]

[mer Ealder | Canicel I

10

Use Cases [2/2]

Games often have a main event loop and several sub

threads that handle:
Graphics rendering

Artificial Intelligence

Responding to player inputs
In a video encoder, you may split the video into multiple
regions and have each thread work on them individually

CS 521: Systems Programming

11

Stepping Back: Processes

= Recall: a process is an instance of a program

= Each process has:
= Binary instructions, data, memory

= File descriptors, permissions

= Stack, heap, registers

= Threads are very similar, but they share almost

everything with their parent process except for:

= Stack

= Registers

CS 521: Systems Programming

12

Sharing Data

Since threads share the heap with their parent process,

we can share pointers to memory locations

A thread can read and write data set up by its parent
Process

Sharing these resources also means that it's faster to

create threads
No need to allocate a new heap, set up permissions,
efc.

CS 521: Systems Programming

13

Other Types of Threads

pthreads is just one way to manage lightweight execution
contexts

Windows has its own threading model

Languages have other features: Go has goroutines that

abstract away some threading details
C#: async/await

Futures

Learning pthreads will help you understand how these models

work
Java threads: basics are very similar to pthreads

CS 521: Systems Programming

14

Getting Started with pthreads

= As usual, we have a new #include!
#include <pthread.h>

= We also need to link against the pthreads library:

gcc file.c -pthread
= You might see -1pthread outinthe wild, but modern
compilers expect -pthread instead

CS 521: Systems Programming

15

Functions We'll Cover Today

= pthread_create
*= pthread_join
= pthread_detach

= pthread_exit

CS 521: Systems Programming

16

Creating a Thread

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

thread —populated by pthread_create , contains thread information

attr —scheduling attributes
stack size, scheduling policies, etc.

to use the defaults, passin NULL

start_routine —function to run (function pointer)

arg —argument to the function (passedas a void *)

CS 521: Systems Programming

17

pthread t

What's pthread_t, the type we used to create our array
of threads?

This is considered an opague type, defined internally by
the library

It's often just an integer that uniquely identifies the

thread, but we can't rely on this
For example, we shouldn't print out a pthread_t

CS 521: Systems Programming 18

The start routine

The most important part of pthread_create IS the start
routine

This function is called by the pthread library as the

starting point for your thread

Passed in as a function pointer
Just like how they sound: they're a pointer to a
specific function
We did this with gsort comparators

CS 521: Systems Programming

19

Passing Arguments

The last argument to pthread_create is "arg”

This can be anything we want to pass to the thread
One common pattern: pass in a thread “ID number”

(called a rank in parallel computing)
Have threads coordinate based on these ranks (for
example, rank O may gather up the result(s) of the
computations from other ranks)

Want to pass in more than one argument? Use a struct

CS 521: Systems Programming

20

Joining Threads

int pthread_join(pthread_t thread, void **value_ptr);

The pthread_join function waits for a pthread to finish
execution (when it calls return)

The return value of the thread is stored in value_ptr
This lets our main thread wait for all its children to finish

up before moving on
Often used to coordinate shutting down the threads,
waiting for their results, and synchronizing logic

Similarto wait() / waitpid()

CS 521: Systems Programming

21

Detaching Threads

int pthread_detach(pthread_t thread);

Normally, threads will continue to live on until they are
joined
(even if they have exited)

Joining cleans up the resources allocated to the thread
(such as its stack)

Sometimes we can't join threads. By detaching them,
we tell the OS to clean them up once they exit

CS 521: Systems Programming

22

pthread_exit

Any guesses what pthread_exit does?

You're right, it launches your default web browser!

Note: if you're skimming these slides to cram for an quiz later, that was only a joke

pthread_exit also has a weird/handy property: if you
call it from the main thread, it won't exit until the rest of
the threads are finished
Nice if you want to wait for your workers to finish

What happens if you just call exit() orreturn from
main?

CS 521: Systems Programming 23

Multi-Process or Multi-Thread?

In general, using multiple processes is simpler and

easier to Implement
Split up the problem, have the processes work on it
independently

However, if the algorithm you are implementing requires

lots of communication or shared state, threads are a

better choice
They are also faster to create and require fewer
system resources

CS 521: Systems Programming

24

Thread Creation Overhead

On Solaris, creating a process is 30x slower than
creating a thread, and context switches are 5x slower

Each operating system has different overhead

associated with processes/threads
Windows: huge process overhead. Use threads where
possible

Linux: relatively low process creation overhead

CS 521: Systems Programming

25

Scalability

Remember: single-threaded (or single-process)
applications cannot run on more than one CPU

This impacts scalability: the ability of your algorithm to
run faster when given more resources

Threads are a great way to take advantage of more
cores to carry out background tasks and make
applications more responsive

CS 521: Systems Programming 26

Keeping Track of Time

We've actually done a little bit of timing already this

semester
The time command

Not fine-grained

We can only test how long it takes to run the entire
program

What happens when we prompt for a value? What
about application startup time (from the OS)?

We need to be able to track things at a finer level

CS 521: Systems Programming 27

gettimeofday

Do not use clock() .

On Unix-based systems, gettimeofday() provides the
wall clock time, generally with 1 s precision

Wall clock time: the actual time taken for something to

run
As opposed to CPU time

Check the output of top for CPU time

#include <timer.h>

CS 521: Systems Programming

28

Timing

double get_time(void)

{
struct timeval t;
gettimeofday (&t, NULL);
// Convert to ms before returning:
return t.tv_sec + t.tv_usec / 1000000.0;
}

CS 521: Systems Programming

29

-stimating 7

To measure performance, we need something CPU-
intensive to do
Printing 'hello world" ain't gonna cut it
How about estimating 7?2 Sure, we could just look it up
and copy several digits into our code as a constant...
But that sounds much too easy. Thisis CS 521!
Instead, we can do this with something called the

Madhava-Leibniz series:
1 1 1 1 _om
1—§+5—7+§—..._ 1

CS 521: Systems Programming 30

Madhava-Lelbniz

1 1 1 1 _ T
1 - § —I_ g 7 _I_ 9 e0ee — 4
The more iterations, the more accurate our estimate

gets...
...however, please note that this is NOT a particularly

efficient method
We're just using it to make our CPUs burn

We can split these iterations up across multiple

processes to speed things up
pthreads to the rescue! We can look at a few

approaches...

CS 521: Systems Programming

31

