CS 521: Systems Programming
Critical Sections

Lecture 18



Today's Schedule

= Critical Sections and Busy Waiting
= Mutexes

= Barriers

CS 521: Systems Programming



Today's Schedule

= Critical Sections and Busy Waiting
= Mutexes

= Barriers

CS 521: Systems Programming



Process/Thread Scheduling

You may have noticed that when we print to the terminal
iIN a multi-threaded application, the order changes for
every run

This happens for a couple of reasons:
We have no control over the actual execution of
threads or processes
Controlled by the OS scheduler
The terminal only accepts one line at a time from a
process (this is why we don't get jumbled output)

CS 521: Systems Programming



The CPU Scheduler [1/2]

The simplest form of scheduling is "round robin”
Go around in a loop and give everybody a little time

In reality, operating systems generally use priority
queues and more advanced logic to choose how to run

our threads
multi-level feedback queues

Some threads may be a higher priority than others,
some may be waiting for I/O to complete, etc...

CS 521: Systems Programming



The CPU Scheduler [2/2]

If your computer has multiple CPUs or multiple cores,
then the scheduler decides which cores run your
processes

If you launch 1000 threads, then the scheduler tries to
give them all a fair share of the CPU

The main thing to remember: we don't have direct
control over how the scheduler chooses to run our
threads

CS 521: Systems Programming



Global Variables

= Let's take a look at what happens when multiple threads

access a global variable at the same time
= Be very careful with globals!

CS 521: Systems Programming



Race Conditions

When multiple threads have access to a variable, race
conditions can occur

This happens when two threads “race” to read/write a
value in memory

The sequence of events is not controlled
Thread 1 wants to subtract 10 from variable A

Thread 2 wants to add 2 to variable A
Which happens first? What will be the outcome?

CS 521: Systems Programming



—Xample

We have two threads, A and B
A and B both want to add 1 to a shared variable, count
What are the different scenarios that can play out here?

What happens if we don't call pthread_join on the
threads”

CS 521: Systems Programming



Handling Race Conditions

Race conditions are... not desirable!

Having your code do unpredictable things is almost
always bad

We want to have control on how events unfold

In other words, we wish to serialize some portions of our
programs

We can do this with critical sections

CS 521: Systems Programming 10



Critical Section

A critical section is a block of code that is protected
from concurrent access

We set up a particular region of our code and then only
allow a single thread to access it at a time

How can we implement critical sections?

CS 521: Systems Programming

11



Susy Walting

One approach for creating critical sections in our code
IS called busy waiting

Wait for your turn in a while loop
while (turn != my_thread_id) { /* Wait .. */ }

Once it's your turn, enter the critical section, do your
work, and then set "turn” to the next thread when you're
done

CS 521: Systems Programming 12



Busy Waiting Downsides

The problem with busy waiting is that the threads are
constantly checking for their turn

Your CPU will spike up to 100% usage as the thread
continues to check, and check, and check...

There isnt much of a speed improvement over a serial
program because so much wasted work is taking place!

There has to be a better way...

CS 521: Systems Programming 13



Today's Schedule

= Critical Sections and Busy Waiting
= Mutexes

= Barriers

CS 521: Systems Programming

14



Mutex

In parallel programming a mutex lock ensures that only

one thread can enter a critical section at a time
Mutex: Mutual Exclusion

Also sometimes just called a lock

This lets you “lock” part of your code so that other

threads cannot access it
(temporarily)

CS 521: Systems Programming

15



Using Mutexes

To create a mutex, use:
pthread_mutex_t mutex =

PTHREAD_MUTEX_INITIALIZER;

Note the type: pthread _mutex_t

Now let's use the mutex to protect our code:

pthread_mutex_lock(&mutex);
shared _var = shared var + 1;

pthread_mutex_unlock(&mutex);

CS 521: Systems Programming

16



Mutex Declaration

Where you declare your mutex is very important

For example, what happens when each thread creates
Its own mutex?

This is basically like checking if you have the keys to
your own house
(you always do... right?)

In general, mutexes should be a shared resource
Declared globally

CS 521: Systems Programming 17



Mutexes: Mental Model [1/2]

= You can think of a mutex as a protector of a shared
resource that only one thread can access at a time
= It's the gatekeeper for your protected resource

= You'll almost always have:
= The mutex

= The variable you're protecting

CS 521: Systems Programming 18



Mutexes: Mental Model [2/2]

= Let's say our shared resource is the whiteboard

= Before you can write on the whiteboard, you have to ask
the instructor first
= The instructor will only allow one student to write on the

board at a time
= ...if you request to use the whiteboard while someone

else is already using it, then the instructor makes you

wait

CS 521: Systems Programming

19



Checking a Mutex

What happens when we try to lock a mutex that is

already locked by another thread?
We block!

In some cases, we want to determine whether we can

lock the mutex, but move on if we cannot:
pthread_mutex_trylock(&mutex)

Even if the mutex is already locked by another thread,
the function call returns immediately

CS 521: Systems Programming

20



Some Notes

There are other ways to define a critical section

We'll be going through several parallelism primitives in
class

Shared variables don't have to be globals
You can allocate memory (via malloc etc)and pass a
pointer to your threads

CS 521: Systems Programming

21



Today's Schedule

= Critical Sections and Busy Waiting
= Mutexes

= Barriers

CS 521: Systems Programming

22



syncing Up

Sometimes we want to synchronize all our threads
Say, we want them all to compute a particular value or call a
function before starting their work in parallel

We can use a barrier to ensure all the participating threads call
a particular function before moving on

pthread_barrier_init(pthread_barrier_t *bar_p, N unsigned

count);
why IS count important here?

pthread_barrier_wait(pthread_barrier_t *bar_p);

pthread_barrier_ destroy(pthread_barrier_t *bar_p);

CS 521: Systems Programming

23



Barrier Issues

Not all implementations of pthreads support barriers
In particular, macOS does not include them

Using many barriers can reduce performance —you'll
only be able to move past the barrier when the slowest

thread gets to it!

Prefer approaches that require less synchronization and
coordination for best performance

CS 521: Systems Programming 24



