
Critical Sections

CS 521: Systems Programming

Lecture 18

▪ Critical Sections and Busy Waiting

▪ Mutexes

▪ Barriers

Today’s Schedule

CS 521: Systems Programming 2

▪ Critical Sections and Busy Waiting

▪ Mutexes

▪ Barriers

Today’s Schedule

CS 521: Systems Programming 3

▪ You may have noticed that when we print to the terminal

in a multi-threaded application, the order changes for

every run

▪ This happens for a couple of reasons:

▪ We have no control over the actual execution of

threads or processes

▪ Controlled by the OS scheduler

▪ The terminal only accepts one line at a time from a

process (this is why we don’t get jumbled output)

Process/Thread Scheduling

CS 521: Systems Programming 4

▪ The simplest form of scheduling is “round robin”

▪ Go around in a loop and give everybody a little time

▪ In reality, operating systems generally use priority

queues and more advanced logic to choose how to run

our threads

▪ multi-level feedback queues

▪ Some threads may be a higher priority than others,

some may be waiting for I/O to complete, etc…

The CPU Scheduler [1/2]

CS 521: Systems Programming 5

▪ If your computer has multiple CPUs or multiple cores,

then the scheduler decides which cores run your

processes

▪ If you launch 1000 threads, then the scheduler tries to

give them all a fair share of the CPU

▪ The main thing to remember: we don’t have direct

control over how the scheduler chooses to run our

threads

The CPU Scheduler [2/2]

CS 521: Systems Programming 6

▪ Let’s take a look at what happens when multiple threads

access a global variable at the same time

▪ Be very careful with globals!

Global Variables

CS 521: Systems Programming 7

▪ When multiple threads have access to a variable, race

conditions can occur

▪ This happens when two threads “race” to read/write a

value in memory

▪ The sequence of events is not controlled

▪ Thread 1 wants to subtract 10 from variable A

▪ Thread 2 wants to add 2 to variable A

▪ Which happens first? What will be the outcome?

Race Conditions

CS 521: Systems Programming 8

▪ We have two threads, A and B

▪ A and B both want to add 1 to a shared variable, count

▪ What are the different scenarios that can play out here?

▪ What happens if we don’t call pthread_join on the

threads?

Example

CS 521: Systems Programming 9

▪ Race conditions are… not desirable!

▪ Having your code do unpredictable things is almost

always bad

▪ We want to have control on how events unfold

▪ In other words, we wish to serialize some portions of our

programs

▪ We can do this with critical sections

Handling Race Conditions

CS 521: Systems Programming 10

▪ A critical section is a block of code that is protected

from concurrent access

▪ We set up a particular region of our code and then only

allow a single thread to access it at a time

▪ How can we implement critical sections?

Critical Section

CS 521: Systems Programming 11

▪ One approach for creating critical sections in our code

is called busy waiting

▪ Wait for your turn in a while loop

▪ while (turn != my_thread_id) { /* Wait … */ }

▪ Once it’s your turn, enter the critical section, do your

work, and then set ”turn” to the next thread when you’re

done

Busy Waiting

CS 521: Systems Programming 12

▪ The problem with busy waiting is that the threads are

constantly checking for their turn

▪ Your CPU will spike up to 100% usage as the thread

continues to check, and check, and check…

▪ There isn’t much of a speed improvement over a serial

program because so much wasted work is taking place!

▪ There has to be a better way…

Busy Waiting Downsides

CS 521: Systems Programming 13

▪ Critical Sections and Busy Waiting

▪ Mutexes

▪ Barriers

Today’s Schedule

CS 521: Systems Programming 14

▪ In parallel programming a mutex lock ensures that only

one thread can enter a critical section at a time

▪ Mutex: Mutual Exclusion

▪ Also sometimes just called a lock

▪ This lets you “lock” part of your code so that other

threads cannot access it

▪ (temporarily)

Mutex

CS 521: Systems Programming 15

▪ To create a mutex, use:

▪ pthread_mutex_t mutex =

PTHREAD_MUTEX_INITIALIZER;

▪ Note the type: pthread_mutex_t

▪ Now let’s use the mutex to protect our code:

▪ pthread_mutex_lock(&mutex);

▪ shared_var = shared_var + 1;

▪ pthread_mutex_unlock(&mutex);

Using Mutexes

CS 521: Systems Programming 16

▪ Where you declare your mutex is very important

▪ For example, what happens when each thread creates

its own mutex?

▪ This is basically like checking if you have the keys to

your own house

▪ (you always do… right?)

▪ In general, mutexes should be a shared resource

▪ Declared globally

Mutex Declaration

CS 521: Systems Programming 17

▪ You can think of a mutex as a protector of a shared

resource that only one thread can access at a time

▪ It’s the gatekeeper for your protected resource

▪ You’ll almost always have:

▪ The mutex

▪ The variable you’re protecting

Mutexes: Mental Model [1/2]

CS 521: Systems Programming 18

▪ Let’s say our shared resource is the whiteboard

▪ Before you can write on the whiteboard, you have to ask

the instructor first

▪ The instructor will only allow one student to write on the

board at a time

▪ …if you request to use the whiteboard while someone

else is already using it, then the instructor makes you

wait

Mutexes: Mental Model [2/2]

CS 521: Systems Programming 19

▪ What happens when we try to lock a mutex that is

already locked by another thread?

▪ We block!

▪ In some cases, we want to determine whether we can

lock the mutex, but move on if we cannot:

▪ pthread_mutex_trylock(&mutex)

▪ Even if the mutex is already locked by another thread,

the function call returns immediately

Checking a Mutex

CS 521: Systems Programming 20

▪ There are other ways to define a critical section

▪ We’ll be going through several parallelism primitives in

class

▪ Shared variables don’t have to be globals

▪ You can allocate memory (via malloc etc) and pass a

pointer to your threads

Some Notes

CS 521: Systems Programming 21

▪ Critical Sections and Busy Waiting

▪ Mutexes

▪ Barriers

Today’s Schedule

CS 521: Systems Programming 22

▪ Sometimes we want to synchronize all our threads

▪ Say, we want them all to compute a particular value or call a

function before starting their work in parallel

▪ We can use a barrier to ensure all the participating threads call

a particular function before moving on

▪ pthread_barrier_init(pthread_barrier_t *bar_p, N unsigned

count);
▪ why is count important here?

▪ pthread_barrier_wait(pthread_barrier_t *bar_p);

▪ pthread_barrier_destroy(pthread_barrier_t *bar_p);

Syncing Up

CS 521: Systems Programming 23

▪ Not all implementations of pthreads support barriers

▪ In particular, macOS does not include them

▪ Using many barriers can reduce performance – you’ll

only be able to move past the barrier when the slowest

thread gets to it!

▪ Prefer approaches that require less synchronization and

coordination for best performance

Barrier Issues

CS 521: Systems Programming 24

