CS 521: Systems Programming
Condition Variables

Lecture 19

Waiting for Changes [1/2]

We discussed how busy walting is one way to prevent
access to a critical section

Unfortunately, busy waiting is very inefficient!
So, we have a better way: mutexes

What about when we want to wait for something to

happen before our thread does its work?
For example: | will wait until | receive a "ready”
message before | process a file

CS 521: Systems Programming

Waiting for Changes [2/2]

= We could busy wait on a variable to change
= Once the change happens, we know we can proceed

= Once again, this is inefficient
= Consider:
= We have two threads, A and B
= Thread A preprocesses the input file
= Thread B calculates the statistics

= |n this case, thread B needs to wait for A
= There is a conditional dependency

CS 521: Systems Programming

Waiting on a... Condition!

To wait for something to happen, we can use condition
variables

Condition variables have two related functions:
wait — wait for the condition to become true

signal — inform the waiting thread that the condition
has changed

When a thread is waiting, it blocks

CS 521: Systems Programming

Blocking vs. Busy Walting

= The big difference between blocking and actively
waiting is efficiency

= Rather than constantly checking, go to sleep and let the

operating system wake you up when something
happens

= Are we there yet?
= Are we there yet?

= Are we there yet?
= Are we there yet?

CS 521: Systems Programming

Alternatives [1/2]

You might be inclined to use plain mutexes to achieve
the functionality we're discussing here

After all, if you have Thread B try to lock a mutex that is

already locked by Thread A, you can sort of pull this off
Thread B will block until Thread A unlocks it

This has some big disadvantages though...
Can we think of all the issues here?

CS 521: Systems Programming

Alternatives [2/2]

How about having both threads lock a mutex as the very first
thing they do?
Race condition!
Maybe Thread A creates Thread B?
Wouldn't work with more than these two threads though
...and doesn't that defeat the purpose? (Just use Thread A
thenl)
Or the main thread locks a mutex, creates Thread A, unlocks,

then creates Thread B
No!l Still has a race condition]

CS 521: Systems Programming

Condition Variables

Often, mutual exclusion is not enough...

The point of a condition variable is to give us the ability
to signal other threads and wait for things

This helps solve a classic problem: bounded

producer/consumer
Task queue with a maximum size

One or more threads are producers that add tasks

One or more threads are consumers that remove (and
process) the tasks

CS 521: Systems Programming

Initializing a Condition Variable

= |nitialization is just like a mutex:
pthread_cond_t cond_variable =
PTHREAD _COND_INITIALIZER;

= Note: to use a condition variable, you also need a mutex
= Why” This protects the condition variable logic

CS 521: Systems Programming

Using a Condition Variable [1/2]

pthread_cond_init(&cond, NULL);

pthread_cond_wait(&cond, &mutex); —waits for a signal

pthread_cond_signal(&cond); — signals a waiting

thread
= We don't have control over which thread will wake up

pthread_cond_broadcast(&cond);
= Signals all waiting threads

CS 521: Systems Programming 10

Using a Condition Variable [2/2]

void *thread_a(void *) {

pthread_mutex_lock(&mutex) ;

while (!'condition) {
/* Note: mutex is released + reacquired here: */
pthread_cond_wait(&cond, &mutex);

}

/* Do the work we were waiting to do! (mutex reacquired) */

pthread_mutex_unlock(&mutex) ;

}

void *thread b(void *) {
pthread_mutex_lock(&mutex) ;
/* Do whatever thread A is waiting for us to do ... */
/* Signal the other thread! */
pthread_cond_signal(&cond) ;
pthread_mutex_unlock(&mutex) ;

CS 521: Systems Programming 11

The Condition

Let’s say we have a whiteboard and we want to make sure
only four students can use it at a time:

pthread_mutex_lock(&mutex) ;

while (students_at _boaxrd > 4) { // <--- our condition
/* Note: mutex is released here: */
pthread_cond_wait(&cond, &mutex);
/* Note: mutex 1is reacquired here */

CS 521: Systems Programming

12

Common Producer/Consumer Setup

Let's use condition variables to implement producer-
consumer synchronization

(A work queue)
Thread 1:
Producer — creates the tasks

Thread 2...N:
Consumers —wait for tasks and carry them out

Usually it's easier to produce the tasks than consume
them (resulting in this one-to-many setup), but that
doesn't have to always be true!

CS 521: Systems Programming 13

Web Server: Prod/Con [1/3]

Imagine you are writing a web server

The server listens for incoming requests and places

them in a queue to be handled by worker threads
We can't have the main thread serve the requests
directly because then it can't listen for more

connections
Web servers need to handle thousands of
concurrent clients!

Ok, protect the queue with a mutex + condition variable
and have N threads wait for work

CS 521: Systems Programming

14

Web Server: Prod/Con [2/3]

Now the main thread can accept connections and the

worker threads serve up the HTML pages, images, etc.

Except... we still have a problem

What happens if there are too many incoming

connections?
If we use a fixed-sized queue, we'll eventually run out
of space and segfault

If we use a flexible queue (say, an elist), then we
could run out of memory

We need to be able to stop producing temporarily

CS 521: Systems Programming

15

Web Server: Prod/Con [3/3]

How can we stop production?

Easy answer: don't put any more connections in the
work queue
But how do we know when it has space again?

You guessed it! Another condition variable!
Block (wait) if the queue is currently full, and signal
after each thread completes its work

Places backpressure on the network connection

CS 521: Systems Programming

16

Building a Barrier [1/2]

We can also use condition variables to build a barrier
Helpful on systems like macOS that do not support
them

pthread_cond_broadcast can signal all waiting threads

Each thread that calls barrier() Increments a counter
Once the counter hits N, then do a broadcast to all
waiting threads

CS 521: Systems Programming 17

Building a Barrier [2/2]

void barrier(void)

'=0),

{
pthread_mutex_lock(&bar_mut);
bar count++;
if (bar_count == thread_count) {
bar count = 0;
pthread_cond_broadcast(&bar_cond);
} else {
// Wait unlocks mutex and puts thread to sleep.
// Put wait in while loop in case some other
// event awakens thread.
while (pthread_cond_wait(&bar_cond, &bar_mut)
// Mutex is relocked at this point.
}
pthread_mutex_unlock(&bar_mut);
}

CS 521: Systems Programming

18

