CS 521: Systems Programming
2roof-of-Work and Bitcoin

Lecture 20

Today's Agenda

= Proof-of-work Systems
= Hashcash

= Bitcoin

CS 521: Systems Programming

Today's Agenda

- Proof-of-work Systems
= Hashcash

= Bitcoin

CS 521: Systems Programming

Proof-of-Work [1/2]

= Wait a minute! | thought we were learning about

parallel programming!
= Did Matthew forget what class this is?

= Well, friends... Project 3 is up!
= And it involves threads

= And bitcoin mining

CS 521: Systems Programming

Proof-of-Work [2/2]

Proof-of-work (POW) systems help prevent DDoS
attacks and other types of spamming

Also useful in cryptocurrencies

Main idea: give up some of your time (or computational
power) to legitimize an action or object

CS 521: Systems Programming

Shell Money

Sea shells were used for thousands of years as legal
tender

It takes time to collect shells, carve them, etc.
In some cases, the shells were woven into
fabric/leather

The currency itself reflected the time it took to be
made, and therefore determined its value

Different groups used different shells/designs
Only carry value because we say so

CS 521: Systems Programming

CAPTCHA

Completely Automated Public Turing test to
tell Computers and Humans Apart

CAPTCHASs are basically proof-of-work systems for
humans

So in other words, POW is an annoying, time consuming
task for your computer to do just in the interest of
proving it's not spamming/DDoSing

Luckily computers don't get annoyed as easily as we

do...

CS 521: Systems Programming

Pricing Functions

POW systems use pricing functions to give the computer a

workout
Dwork C., Naor M. Pricing via Processing or Combatting

Junk Mail.
A pricing function f has the following requirements:
f is moderately easy to compute

f is not amenable to amortization: given L values, my...my,
the amortized cost of computing f(my)...f(myg) is
comparable to computing f(m;) foranyl <=1 <=L

given x and y, it is easy to determine if y = f(x)

CS 521: Systems Programming

Hash Inversions

A common pricing function is having the computer

perform hash inversions
“What was the input that produced this hash code?”

Hash inversions are tough to compute (assuming a

cryptographic hash function)
After all, they're designed to be one way functions

Any time we map an infinite set of inputs to a finite set
of numbers (hash space), this is feasible, but still
tough.

CS 521: Systems Programming

An Example [1/2]

Let's say our mission is to find a hash with four leading
Zeros

Start out with what we want to send:
"Hello World!"

We also need to append a nonce
Number used only once
We increase this with each hash attempt

This will change our output hash each iteration

CS 521: Systems Programming

10

An Example [2/2]

This approach allows us to eventually find our matching
hash, but has a weakness

We can precompute the hashes and re-use them later
We also need some type of identifier for this particular

transaction
Maybe a centralized service hands out transaction IDs

We could use the current time, as long as we can
assume clocks are reasonably synced up

CS 521: Systems Programming 11

A Pricing Function

while True:
nonce = nonce + 1
string = message + str(nonce)
hash = shal(string)

if prefix(hash) == '0000':
Send message with hash
break

CS 521: Systems Programming

12

Verification

if shal(msg.payload) == msg.hash:
It's valid.. Whew! That was tough!
(You could also verify the
transaction id or timestamp here)

CS 521: Systems Programming

13

Varying the Difficulty

To change the difficulty, we'll just adjust the number of
zeros we want

Unfortunately, the difficulty won't increase linearly

Approaches:
Perform a bitwise comparison rather than string
(allows more precision)

Have the sender perform multiple inversions(maybe
message1 + another nonce)

CS 521: Systems Programming 14

Today's Agenda

= Proof-of-work Systems
= Hashcash

= Bitcoin

CS 521: Systems Programming

15

Hashcash

Adds a new header to emails in an effort to reduce DDoS/spam
Proposed by Dwork and Naor
You can install the hashcash command line utility:
$ hashcash -m 'mmalensek@usfca.edu’
hashcash stamp: 1:20:200927:mmalensek@usfca.edu::ZeNi

+DkIeFrH3aUl:00
009nf0

On the receiving end, all that has to be done is verify the SHA-1
hash of the header

CS 521: Systems Programming 16

Header Fields

1:20:200927 :mmalensek@usfca.edu: :ZeNi+DkIeFrH3aUl: 20009NT0

ver: Hashcash version

bits: Number of zero bits

date: The time that the message was sent: YYMMDD
resource: Resource data string being transmitted
ext: Extension (currently ignored)

rand: String of random characters

counter: Nonce

CS 521: Systems Programming 17

Sending a Message

= The sender performs the hash inversion and prepares

the header
= This takes a little CPU time, but shouldn't be
noticeable

= Adds the header to the email message

= Performs the send operation as usual

CS 521: Systems Programming

18

Recelving a Message

= On the receiving side, all we need to do is compute the
SHA-1 hash of the entire Hashcash header

= Then we check:
= That the correct number of leading zeroes is present

= The provided date is valid

= This takes an imperceptible amount of time

CS 521: Systems Programming 19

Why Hashcash Works

Even heavy email users only send a few hundred emails
per day

Spammers want to send millions
This is going to cost a lot of CPU time

Additionally, sending an email with no header or an

incorrect header will incur steep penalties
Too many incorrect headers? Ban the IP

Best of all, we don't have to start paying for email

CS 521: Systems Programming

20

Why it doesn't work [1/2]

Back in 1992 when Hashcash was invented, we didn't

have such a huge variety of computing hardware
Smartphones, tablets, refrigerators, etc.

This makes coming up with the right difficulty for the
challenge... difficult.

The power of computing hardware isn't distributed
uniformly across the Earth

Hash inversions are amenable to parallelism and
custom hardware

CS 521: Systems Programming

21

Why it doesn't work [1/2]

Spammers could adopt similar hardware to that of

Bitcoin miners
GPUs, ASICs

Depends on cost vs. benefit
Related: cloud instances. Computing is so cheap!

Since email is decentralized, you can't force everyone to

use this new standard
Would actually be easier nowadays (get Google and
Microsoft on board, and you're just about done)

CS 521: Systems Programming

22

Today's Agenda

= Proof-of-work Systems
= Hashcash

= Bitcoin

CS 521: Systems Programming

23

Bitcoin Now

1 BTC = 93,789 USD “[]

= Every time | talk about bitcoin | realize how rich |
would've been if I'd have bought some in 2017

~400,000 transactions per day
= Down from two years ago!

~19m bitcoins in circulation
= Maxes outat21m

See: http://blockchain.info

CS 521: Systems Programming

24

http://blockchain.info/

Slockchain

The Bitcoin blockchain is a decentralized database of
Bitcoin transactions

Each block in the chain includes the hash of the
previous block

Starts with the genesis block

When a transaction occurs, it is added to the current
block and will be verified by miners

CS 521: Systems Programming

25

BloCKS

A block is a list of transactions with some metadata
Magic number (4 bytes) = OxD9B4BEF9

Block size (4 bytes)

Block header

Transaction counter

Transaction data

CS 521: Systems Programming

26

Block Headers

Version

Hash of the previous block
= This makes tampering with the chain difficult

Current hash of the transactions in the block

Timestamp (last update)
Difficulty

Nonce

CS 521: Systems Programming

27

Reaching Agreement

Bitcoin allows forks off of the current block

Whichever fork is acknowledged and used by the most

participants becomes the “true” path
Longest path wins

Transactions that went to a "failed” fork are added back
to the "true” blockchain

CS 521: Systems Programming

28

Reaching an Agreement

Provisions are in place to ensure transactions are dealt
with in a reasonable amount of time

Target: 10 minutes
Every 2,016 blocks the system automatically adjusts its
difficulty to hit the 10-minute target

From 2014 - 2015 the average number of nonces tried
before a new block could be created increased from 16
quintillion to 200 quintillion

CS 521: Systems Programming

29

Mining Bitcoin

Bitcoin uses the Hashcash algorithm for a different
pUrpPOSse: Mining coinNs

"Mining” means verifying a block of transactions
Finding the nonce (aka solution)
Miners, who are the basis of transaction verification, are

paid in new bitcoins and transaction fees
The reward of new bitcoins is halved every 210,000
blocks (~4 years)

Monetary supply limited to 21m bitcoins

CS 521: Systems Programming 30

Verification

In bitcoin, the difficulty of the challenge is varied to
keep the network chugging along

Once all 21m bitcoins are created, miners will be
rewarded for verification via transaction fees only

What is the cost vs. benefit of mining these coins?
Electricity vs. the size of the reward

Lots of companies now build power-efficient hardware
specifically for mining

CS 521: Systems Programming

31

Pooled Mining

As difficulty goes up, the chances of a single miner
verifying a block goes down

To combat this, pools of miners formed

Pools divide up the work (honces) among participants
Rewarded with a share of new bitcoins based on how
much work was done

L ess wasted effort, but less reward

CS 521: Systems Programming

32

Moral Issues

We are consuming massive amounts of fossil fuels to
produce fake money

Production is only hard because we make it so
Mining hardware gets bought up and then discarded
once we move to harder hash inversions

Some Useful Proof-of-Work systems try to do beneficial

WOork
Finding prime numbers (Primecoin)

Protein folding (Curecoin)

CS 521: Systems Programming

33

