
Bit Manipulation

CS 521: Systems Programming

Lecture 21

▪ Last class, we lightly discussed using the raw bits from a

number to determine the mining “difficulty”

▪ In C, we deal with numbers at the bit level quite a bit

▪ (ha! 💩)

▪ They are also frequently used with flags to toggle

options and combine them with other options

▪ These are called bit fields

Bit Manipulation

CS 521: Systems Programming 2

▪ You’ve already used bit fields

▪ Yep! That’s right! In two different ways!

▪ open(file, O_WRONLY | O_TRUNC | O_CREAT, 0666);
▪ Here, we are doing a bitwise OR to combine these

fields

▪ Write only, truncate, and create are all turned on

▪ They are also supported with struct members

▪ Since the layout of a struct varies this is often

emulated using a single integer

Bit Fields

CS 521: Systems Programming 3

▪ From Wikipedia:

/* Each of these preprocessor directives defines a single bit, corresponding
 * to one button on the controller. Button order matches that of the
 * Nintendo Entertainment System. */

#define KEY_RIGHT (1 << 0) /* 00000001 */
#define KEY_LEFT (1 << 1) /* 00000010 */
#define KEY_DOWN (1 << 2) /* 00000100 */
#define KEY_UP (1 << 3) /* 00001000 */
#define KEY_START (1 << 4) /* 00010000 */
#define KEY_SELECT (1 << 5) /* 00100000 */
#define KEY_B (1 << 6) /* 01000000 */
#define KEY_A (1 << 7) /* 10000000 */

▪ << is the left shift operator; we can also shift to the right: >>

Another Example: Game Controller

CS 521: Systems Programming 4

https://en.wikipedia.org/wiki/Bit_field

The previous example, written directly using 0b syntax:

#define KEY_RIGHT 0b00000001
#define KEY_LEFT 0b00000010
#define KEY_DOWN 0b00000100
#define KEY_UP 0b00001000
#define KEY_START 0b00010000
#define KEY_SELECT 0b00100000
#define KEY_B 0b01000000
#define KEY_A 0b10000000

Writing in Binary

CS 521: Systems Programming 5

▪ AND (&)

▪ OR (|)

▪ NOT (~)

▪ XOR (^)

▪ Bit shifting:

▪ >>

▪ <<

Bitwise Operators

CS 521: Systems Programming 6

Compare the two sets of bits. If both bits are set, the result

is a 1 :

 0101 (decimal 5)
AND 0011 (decimal 3)
 = 0001 (decimal 1)

/* C: */
0101 & 0011 = 0001

Often used to determine (test) if particular bits are set.

Bitwise AND

CS 521: Systems Programming 7

If either bit is set to 1, then the result is 1:

 0101 (decimal 5)
OR 0011 (decimal 3)
 = 0111 (decimal 7)

/* C: */
0101 | 0011 = 0111

Often used to set (turn on) particular bits.

Bitwise OR

CS 521: Systems Programming 8

Flips the bits:

NOT 0111 (decimal 7)
 = 1000 (decimal 8)

/* C: */
~0111 = 1000

Bitwise NOT

CS 521: Systems Programming 9

Set to 1 if only one of the bits is 1, but set to 0 if both bits

are 0 or both are 1:

 0101 (decimal 5)
XOR 0011 (decimal 3)
 = 0110 (decimal 6)

/* C: */
0101 ^ 0011 = 0110

Often used for toggling particular bits.

Bitwise XOR

CS 521: Systems Programming 10

int gameControllerStatus = 0;

/* Sets the gameControllerStatus using OR */
void keyPressed(int key) {
 gameControllerStatus |= key;
}

/* Toggles the gameControllerStatus using XOR */
void keyPressed(int key) {
 gameControllerStatus ^= key;
}

/* Tests whether a bit is set using AND */
int isPressed(int key) {
 return gameControllerStatus & key;
}

Back to our Game Controller

CS 521: Systems Programming 11

▪ Want to toggle a flag?

▪ opts = opts ^ flag

▪ Turn it off?

▪ opts = opts & ~flag

▪ On?

▪ opts = opts | flag

Flipping Bits

CS 521: Systems Programming 12

You can move bits around with << and >> :

00010111 << 1 = 00101110
00010111 << 3 = 10111000

00010111 >> 1 = 00001011
00010111 >> 3 = 00000010

Neat: A left shift by is the same as multiplying by

Shifting

n 2
n

CS 521: Systems Programming 13

▪ We use Base 10 for our daily lives

▪ Computers? Base 2

▪ And then there’s Base 16… Hexadecimal

▪ Denoted by 0x

▪ Hexadecimal is a compact way to represent 4 bits of

information

▪ 4 bits = nibble

▪ 8 bits = byte

▪ So 0xFF gives us a byte’s worth of information

Hexadecimal

CS 521: Systems Programming 14

▪ You might’ve noticed we’ve been using hexadecimal a

lot when working with binary

▪ 0-9 : 0-9 in binary

▪ A-F : 10-15

▪ So, we can store 16 bits of information

▪ Hex is nice when working with binary numbers:

▪ int i = 2815;

▪ int i = 0xAFF;
▪ 0xAFF = 1010 1111 1111

Hex Notation

CS 521: Systems Programming 15

▪ In P3, we start out with a difficulty mask of

0x00000FFF

▪ Five 0’s and 3 F’s, or in binary:

▪ 5 * 4 = 20 bits of zeros

▪ 3 * 4 = 12 bits of ones

The Difficulty Mask

CS 521: Systems Programming 16

▪ Let’s say I asked you to set the 3rd bit in a bit field

▪ How would you accomplish this?

▪ bit_field = bit_field | (0x1 << 3)

▪ We can extend this approach to adjust the difficulty of

our bitcoin miner

▪ We’ll just need to find out how many bits we need to to

set to 1

Setting Specific Bits

CS 521: Systems Programming 17

