
Socket Programming

CS 521: Systems Programming

Lecture 22

▪ Nowadays, you can’t do anything without a network

connection

▪ Like, including using your VMs for class…

Networking

CS 521: Systems Programming 2

▪ Host – computer/device connected to a network.

Communicate via packets

▪ How do they connect?

https://www.submarinecablemap.com

▪ Packet – a unit of data, generally represented as a

sequence of bytes

▪ Router – device that forwards packets through the

network until they reach their destination host

▪ Protocol – defines how packets are laid out

Network Terminology

CS 521: Systems Programming 3

https://www.submarinecablemap.com/

CS 521: Systems Programming 4

CS 521: Systems Programming 5

▪ We use the Internet Protocol (IP) Suite for a majority of

our communications

▪ For reliable delivery, we use the Transmission Control

Protocol (TCP)

▪ Modeled as a stream of bytes

▪ Packets will reach their destination (eventually…) and

the contents are verified

▪ Retransmit when a failure/corruption occurs

▪ Packets are received in order

TCP

CS 521: Systems Programming 6

▪ User Datagram Protocol (UDP) on the other hand, is

connectionless

▪ Rather than a stream of bytes, we deal with discrete

messages

▪ No acknowledgment or retransmission

▪ Ordering is not guaranteed

▪ Used for games, video streaming, and other

applications where delivery needn’t be guaranteed

UDP

CS 521: Systems Programming 7

▪ The standard API for network communication is

sockets

▪ Introduced in 1983, 4.2 BSD UNIX

▪ Sockets follow the Unix philosophy

▪ everything is a file!

▪ When we open a connection, we get a file descriptor

that we can read() and write() from

▪ Just like a file… or pipe

Sockets

CS 521: Systems Programming 8

▪ Each outgoing and incoming socket connection is

assigned a port number

▪ 16-bit unsigned integer (max: 65535)

▪ Want to talk to a web server via (HTTP)? Port 80!

▪ How about SSH? Port 22!

▪ Processes bind to these ports and listen on them

▪ When initiating an outgoing connection (e.g., from your

browser) you can assign any available port

Ports

CS 521: Systems Programming 9

▪ Clients connect to a remote host for some type of

service

▪ ssh, http, etc.

▪ A server listens for these incoming connections and

responds to them

Clients and Servers

CS 521: Systems Programming 10

1. Create a socket

2. Bind to a port

3. Listen for connections

4. Accept incoming connections:

▪ This wraps a usual Unix file descriptor internally

▪ Note: TCP is bidirectional: you can send and receive

from the same FD

Basic Server Workflow

CS 521: Systems Programming 11

1. Create a socket

2. Connect to the remote host

3. Write/read data to/from the socket

▪ Again, TCP is bidirectional: you can send and receive

from the same connection

Basic Client Workflow

CS 521: Systems Programming 12

▪ The first unintuitive thing about (TCP) sockets is there is

no concept of a “message”

▪ Instead, everything gets read/written as byte arrays

(streams of bytes)

▪ Not all the bytes will come in at the same time,

although order is guaranteed with TCP

▪ We generally need to use fixed-size messages or prefix

them with a length to know what to expect

TCP Weirdness

CS 521: Systems Programming 13

▪ A common message format:

▪ [MESSAGE SIZE][MESSAGE PAYLOAD]

▪ Once you’ve unpacked the message payload, it can

contain more fields

▪ For example: message type, version number, flags,

etc.

▪ This allows for a layered approach:

▪ Network code

▪ Message creation code

▪ Pass through a chain of handlers

Simple Messaging [1/2]

CS 521: Systems Programming 14

▪ If you don’t need advanced features, size-prefixed

messages work well

▪ Exceptions:

▪ You’d like to avoid reading the entire message before

you start processing it

▪ You don’t even need to process the whole message

(perhaps you are forwarding it somewhere else)

▪ Network wire formats have a huge range of features

and complexity

Simple Messaging [2/2]

CS 521: Systems Programming 15

▪ Serialization transforms an object, structure, or

application state into a format for transmission

▪ (and often storage to disk)

▪ Most common: binary formats

▪ Better performance

▪ When you receive a serialized message, transforming it

back into its original representation is called

deserialization

Serialization

CS 521: Systems Programming 16

▪ Let’s build a simple chat program…

Trying it out

CS 521: Systems Programming 17

