
A Whirlwind Tour of Go

CS 677: Big Data

Lecture 2

▪ Go Basics

▪ A break (to write some Go)

▪ Slightly more advanced Go

Today’s Schedule

CS 677: Big Data 2

▪ Go Basics

▪ A break (to write some Go)

▪ Slightly more advanced Go

Today’s Schedule

CS 677: Big Data 3

▪ Yes, I am going to make lame jokes like this all semester.

▪ I mentioned last class we’ll be using Go (a.k.a “golang”)

for our systems-building projects

▪ Let’s talk a bit about Go…

Time to Go

CS 677: Big Data 4

▪ Go sits somewhere between C and Java in terms of

functionality

▪ Like C: compiled, simple syntax, fairly small standard

library (at least from a modern perspective), easy to

write systems software

▪ Like Java: memory safety, garbage collection, rapid

development

▪ New: a different approach to concurrency

▪ …that works well for distributed systems

Go

CS 677: Big Data 5

▪ Pros:

▪ Easy to pick up

▪ Fairly fast

▪ Compiled, so no need to distribute JVMs etc

▪ Syntax isn’t huge and bulky

▪ Cons:

▪ It’s not as established or mature as Java

▪ The standard library lacks some data structures you might

expect to have built in

▪ Still (generally) not as fast as C, C++, Rust

Pros and Cons

CS 677: Big Data 6

▪ Go is easy to pick up if you’re already used to Java, C, or

Python

▪ I’d estimate it takes about 1 week to be productive, 2

weeks to really start getting the hang of it.

▪ Lots of companies are using Go these days

▪ Building microservices

▪ Building systems software

▪ Even modern websites

Learning Curve

CS 677: Big Data 7

package main

import "fmt"

func main() {
 fmt.Println("Hello world!")
}

▪ Println like Java but so easy to type!

▪ Hmm, no return value or arguments?

▪ NO SEMICOLONS?!

Obligatory “Hello World”

CS 677: Big Data 8

▪ Install go with your package manager

▪ go build whatever.go will produce an executable

called whatever

▪ After compiling, you can just run ./whatever

▪ No CLASSPATH stuff, JAVA_HOME , etc.!

▪ Or, you can do both in a single step:

go run whatever.go

▪ Note: an executable will not be produced in this case

Compiling and Running

CS 677: Big Data 9

Let’s look at a few basic things that we expect all

languages to have…

Continuing our Tour

CS 677: Big Data 10

package main
// Use this format for multiple imports. Convention is to always do this,
// even if you only have a single import.
import (
 "fmt"
 "strconv"
)
func main() {
 var str = "Hello " + "world" + "!" // We didn't specify a type!
 var magicNumber int = 42 // Notice how we gave this one a type
 f := 3.0 // := is shorthand for 'var f = ...'
 var a, b, c = 1, 2, 3 // Creating and assigning many ints

 fmt.Println(str + " The magic number is: " + strconv.Itoa(magicNumber))
 fmt.Printf("We can printf! f = %f\n", f)
 fmt.Printf("a = %d, b = %d, c = %d\n", a, b, c)
}

Variables

CS 677: Big Data 11

▪ // and /* ... */ , just like C and Java. 'Nuff said.

▪ What about Doxygen / Javadoc style comments?

▪ Write a comment above whatever it is you’re

documenting. That’s it! (No special /** or similar to

identify document comments)

▪ Generate documentation with godoc

▪ There are no special identifiers, e.g., @param .

▪ The idea here is your variables should be named

clearly enough that these are not necessary

Comments

CS 677: Big Data 12

▪ As you’ve seen, go uses type inference to figure out

what the type is for each variable

▪ We can be explicit about the type if we want

▪ Basic types:

▪ bool

▪ string , rune

▪ int , uint

▪ byte

▪ float32 , float64

Types

CS 677: Big Data 13

a := 35
if a > 64 {
 fmt.Println("Bigger than 64!")
} else if a > 32 {
 fmt.Println("Bigger than 32!")
} else {
 fmt.Println("Not bigger than 32 or 64!")
}

▪ Support for if , else if , and else

▪ No parentheses

▪ Unlike C, Java, Python, there is no ternary if in the language

(something ? true : false)

Conditionals

CS 677: Big Data 14

There is only one type of loop: for

// The syntax we're used to, just without parentheses:
for i := 0; i < 100; i++ {
 fmt.Println(i)
}

// This is more like a 'while' loop:
i := 0
for i < 100 {
 fmt.Println(i)
 i = i + 1
}

// "Forever" infinite loop (like while(true) { ... })
for {
 fmt.Println("loop")
 break // 'continue' is also supported in for loops!
}

Loops

CS 677: Big Data 15

Getting func -y

func doSomething() { // Takes no params, doesn't return anything
}

func isThisClassOverYet() bool { // Returns a boolean
 return false
}

func addThree(numberOne int, numberTwo int, numberThree int) int {
 return numberOne + numberTwo + numberThree
}

// We can omit all but the last type if they are the same:
func addThree(numberOne, numberTwo, numberThree int) int {
 return numberOne + numberTwo + numberThree
}

Functions

CS 677: Big Data 16

▪ So far we’ve looked at types, variables, conditionals,

loops, and functions

▪ Apart from switching around the order of things and

eliminating some non-essential functionality, everything

is probably what we’d expect to see so far.

▪ So we’ll look at the things that make Go a bit more

unique… after a break.

Getting More Advanced

CS 677: Big Data 17

▪ Go Basics

▪ A break (to write some Go)

▪ Slightly more advanced Go

Today’s Schedule

CS 677: Big Data 18

1. Make sure you can log onto the CS network with ssh

▪ ssh USERNAME@stargate.cs.usfca.edu

▪ Default password is your student ID

▪ Contact support@cs.usfca.edu if you have problems

2. Once you’re there, you should be able to ssh orionXX

▪ Where XX is a number from 01-12

▪ We’ll use this cluster for our projects

3. Start building the “hello world” of big data: word count

▪ Given a text file, count the number of words and lines

Break Time

CS 677: Big Data 19

mailto:support@cs.usfca.edu

▪ Go Basics

▪ A break (to write some Go)

▪ Slightly more advanced Go

Today’s Schedule

CS 677: Big Data 20

I promised some weirder Go stuff… Let’s check it out.

Back to business

CS 677: Big Data 21

▪ Go does not have classes. A struct is the closest

relative:

type LogEntry struct {
 accessTime time.Time
 userIP net.IP
 pageURL url.URL
}

▪ You can still write object-oriented programs, but the

data structures and functions are defined separately

Structs

CS 677: Big Data 22

type Person struct {
firstName string
lastName string
age int

}

// This is like a Java .toString() method:
func (p Person) String() string {

return fmt.Sprintf("Hello, my name is %s %s! I am %d years old. Bye!",
p.firstName, p.lastName, p.age)

}

func main() {
bob := Person{"Bob", "Bobberton", 38}
fmt.Println(bob)

}

OOP With Receiver Functions

CS 677: Big Data 23

▪ Like Java, you can control function/method visibility

▪ Functions are either exported or unexported

▪ Or in other words, visible outside their package

▪ Not every function has to belong to a class like in

Java, so we deal with package scoping instead

▪ Capitalized() = exported

▪ As our String() function was in the previous

example

▪ unCapitalized() = not exported

Visibility

CS 677: Big Data 24

Arrays behave similarly to other languages. As usual, the

declaration looks a bit different:

var nums [100]int
nums[0] = 24
nums[1] = 22
nums[99] = 1000
//nums[100] = 10 (will not compile -- out of bounds!)

▪ Indexes are 0-based and work as you’d expect.

▪ Each element is set to their data type’s default initial value (0 for int)

Creating an Array

CS 677: Big Data 25

We can iterate through an array similarly to how we would

in C/Java. Use len() to determine its length:

for i := 0; i < len(nums); i++ {
 fmt.Printf("%d %d\n", i, nums[i])
}

▪ On a related note: go only supports ‘postfix increment’

▪ i++

▪ Cannot be used as an expression (i.e., a := i++ is not

allowed!)

Iterating: len()

CS 677: Big Data 26

var nums [100]int
nums[0] = 24
nums[1] = 22
nums[99] = 1000
//nums[100] = 10 (will not compile -- out of bounds!)

for i, value := range nums {
 fmt.Printf("%d %d\n", i, value)
}

▪ Note: range is a keyword. It does not take parameters.

Ranges (“for each” loop)

CS 677: Big Data 27

Say we want a for each loop but don’t need the index:

// This won't compile...
for i, value := range nums {
 fmt.Printf("%d\n", value)
}

Use _ to throw away (ignore) a variable:

for _, value := range nums {
 fmt.Printf("%d\n", value)
}

Unused Variables

CS 677: Big Data 28

▪ When variables are passed to a function, a copy is

made

▪ If we want to be able to change a variable from inside a

function, we can use pointers

// Takes in a pointer to an array of 100 ints:
func printArrayPointer(arr *[100]int) {
 for _, value := range arr {
 fmt.Printf("%d\n", value)
 }
}
...
printArrayPointer(&nums)
// Any changes to nums made in printArrayPointer WILL be visible here

Pointers

CS 677: Big Data 29

▪ Thus far, you’ve seen us setting an explicit size for the

arrays being passed to a function.

▪ Umm, is that required?

▪ Yes.

▪ But don’t worry. It’s not a big deal…

Array Sizing

CS 677: Big Data 30

▪ Arrays are always a fixed size

▪ To resize an array, we can use a slice:

// [] indicates a slice (note no size is given)
func printArray(arr []int) {
 for _, value := range arr {
 fmt.Printf("%d\n", value)
 }
}

Slices

CS 677: Big Data 31

▪ Go’s arrays are a lot like Java’s

▪ You use them, but not that often

▪ ArrayList (or other implementations of List<>) are what we

use more in Java

▪ In go, you’ll see slices being used very frequently

▪ So what is a Slice?

▪ A pointer to an array

▪ A size

▪ A capacity

Slices vs Arrays [2/2]

CS 677: Big Data 32

Use them to create “views” of your arrays:

// Create a slice with the first 10 elements of 'nums':
chopChop := nums[1:10]
for _, value := range chopChop {
 fmt.Printf("%d\n", value)
}

Or we can create a new, empty slice:

slicey := make([]int, 0, 100)
// len(slicey) = 0
// cap(slicey) = 100

Slicing and Dicing

CS 677: Big Data 33

▪ Slices are “views” of arrays: when you re-slice a slice,

you’re just changing where the pointer points in the

array!

▪ If you change the underlying array, the slice contents

change too!

▪ A slice’s capacity is fixed since it is based on its backing

array

▪ BUT we can resize a slice easily!

▪ someSlice = append(someSlice, someNewThing)

In Memory

CS 677: Big Data 34

▪ When we append to a slice, internally we are:

1. Checking if we’ve exceeded the array capacity. If so,

allocate a new slice with a backing array that’s double

the size

▪ make

2. Copy the elements over to the new slice

▪ copy

3. Return the new slice!

▪ Slices have a “slice header” that’s basically a struct with

this information included

Resizing

CS 677: Big Data 35

▪ What happens if your backing array gets resized? Are

the old “slice pointers” updated?

▪ No. They still point at old data. The Go garbage

collector won’t delete it until it is unreferenced

▪ This sounds horrible, but in practice you probably won’t

pass pointers to slice elements around

▪ Generally you pass the slices around your code, so

they always contain up to date pointers

Pointers after Resize

CS 677: Big Data 36

Go has a built in Map, my favorite data structure of all time:

Let’s create one:

myMap := make(map[string]int)
/* | |
 | \--> value's type
 \--> key's type
*/

And put something in it: myMap["test"] = 42

Go Maps

CS 677: Big Data 37

▪ We can create a map and add entries to it at the same time:

myMap := map[string]int{
 "thing1": 1,
 "thing2": 2,
 "thing3": 45,
 "thing4": 99,
 "something else": 10000,
}

▪ Don’t forget the comma on the last line! (,)

▪ By the way: you can auto-format your code like above by

running go fmt

Pre-Populating a Map

CS 677: Big Data 38

ages := make(map[string]int)
ages["matthew"] = 45
ages["alice"] = 22
ages["joe"] = 99

...

ages["joe"] = 95 // The entry for 'joe' is updated w/ new value

Print functions can handle maps automatically:

fmt.Println("Here's everyone's ages:", ages)
Here's everyone's ages: map[alice:22 joe:128 matthew:45]

Adding to a Map

CS 677: Big Data 39

The built-in delete function removes items from the map.

len reports it size, same as arrays or slices:

ages["matthew"] = 99
fmt.Printf(">>> %d\n", len(ages))
>>> 3

delete(ages, "matthew")

fmt.Printf(">>> %d\n", len(ages))
>>> 2

Deleting from a Map

CS 677: Big Data 40

We can use a 2nd optional return value when retrieving

from a map to determine whether the element is present or

not:

lookup := "bill"
_, present := ages[lookup]
if present {
 fmt.Println("We have " + lookup + " !")
} else {
 fmt.Println("There is no " + lookup + " here :-(")
}

Checking for Items

CS 677: Big Data 41

▪ You can use the “comma ok” idiom to test for keys in a

set:

// Assume we have a map of things:
if thing, ok := things[foo]; ok {
 // 'foo' was in the map
}

// or, if we don't care about the value:
if _, ok := things[foo]; ok {
 // 'foo' was in the map
}

A Common Pattern for “Contains”

CS 677: Big Data 42

Let’s try accessing an item that doesn’t exist in the map:

fmt.Println(ages["bobby"])

What happens? An error? Runtime exception? Panic?

0

The default value for the datatype (int in this case) is

returned.

Default Values

CS 677: Big Data 43

▪ In Go, a set is a map with any type of key and a bool for its value:

professors := map[string]bool {
 "Alark" : true,
 "Dave" : true,
 "Sophie" : true,
}

if professors[name] {
 // The professor exists
}

▪ Since the default value of the set will be false , checking for a non-

existing entry will return false

Implementing a Set

CS 677: Big Data 44

▪ We can use anything that’s comparable as a key. This

includes:

▪ boolean, numeric, string, pointer, and structs or arrays

that contain only those types

▪ With structs, all the members are used to evaluate

equality

▪ We cannot use slices, maps, and functions as keys

What Can be a Key?

CS 677: Big Data 45

▪ All go source files are UTF-8 and the language provides

great support for Unicode

▪ Strings are represented as arrays of bytes

▪ But that is problematic if we have characters outside

the usual ASCII range

▪ Most of the time, we interpret strings arrays of rune

instead (32-bit integers)

Strings and Runes

CS 677: Big Data 46

package main
import "fmt"
// Let's check out the difference between these two loops...
func main() {
 const str = "হ�ােলা "
 fmt.Println("--- " + str + " ---")
 for i := 0; i < len(str); i++ {
 fmt.Printf("%02d %c\n", i, str[i])
 }
 fmt.Println()
 fmt.Println("--- " + str + " ---")
 for i, runeValue := range str {
 fmt.Printf("%02d %c\n", i, runeValue)
 }
}

Runes

CS 677: Big Data 47

▪ This is a lot to take in, and honestly, it’s probably better

to play with it a bit.

▪ Let’s work on Lab 1!

Okay, okay!

CS 677: Big Data 48

