CS 677: Big Data

A Whirlwind Tour of Go

Lecture 2

Today's Schedule

= (Go Basics
= A break (to write some Go)

= Slightly more advanced Go

CS 677:Big Data

Today's Schedule

= Go Basics
= A break (to write some Go)

= Slightly more advanced Go

CS 677:Big Data

Time to Go

Yes, | am going to make lame jokes like this all semester.

| mentioned last class we'll be using Go (a.k.a “golang”)
for our systems-building projects

Let's talk a bit about Go...

CS 677:Big Data

Go

o sits somewhere between C and Java in terms of
functionality

Like C: compiled, simple syntax, fairly small standard
library (at least from a modern perspective), easy to
write systems software

Like Java: memory safety, garbage collection, rapid
development

New: a different approach to concurrency
...that works well for distributed systems

CS 677:Big Data

Pros and Cons

= Pros:
= Easy to pick up
= Fairly fast
= Compiled, so no need to distribute JVMs etc

= Syntax isn't huge and bulky

= Cons:
= |t's not as established or mature as Java

= The standard library lacks some data structures you might
expect to have built in

= Still (generally) not as fast as C, C++, Rust

CS 677:Big Data

L earning Curve

Go is easy to pick up if you're already used to Java, C, or
Python

I'd estimate it takes about 1 week to be productive, 2
weeks to really start getting the hang of it.

Lots of companies are using Go these days
Building microservices

Building systems software

Even modern websites

CS 677:Big Data

Obligatory “Hello World"

package main
import "fmt"

func main() {
fmt.Println("Hello world!")
by

= Println like Java but so easy to type!

= Hmm, no return value or arguments?
= NO SEMICOLONS?!

CS 677:Big Data

Compiling and Running

Install go with your package manager

go build whatever.go will produce an executable
called whatever

After compiling, you can justrun ./whatever
NO CLASSPATH stuff, JAVA_HOME , etc.!

Or, you can do both in a single step:

go run whatever.go
Note: an executable will not be produced in this case

CS 677:Big Data

Continuing our Tour

Let's look at a few basic things that we expect all
languages to have...

CS 677:Big Data

10

Variables

package main
// Use this format for multiple imports. Convention is to always do this,
// even 1f you only have a single import.

import (
llfm-tll
"strconv"

)

func main() {
var str = "Hello " + "world" + "!" // We didn't specify a type!
var magicNumber int = 42 // Notice how we gave this one a type
f 1= 3.0 // := 1s shorthand for 'var f = ...
var a, b, c =1, 2, 3 // Creating and assigning many ints
fmt.Println(str + " The magic number 1is: " + strconv.Itoa(magicNumber))

fmt.Printf("We can printf! f = %f\n", f)
fmt.Printf("a = %d, b = %d, c = %d\n", a, b, c)

CS 677:Big Data

11

Comments

// and /x ... %/ ,justlike C and Java. 'Nuff said.

What about Doxygen / Javadoc style comments?
Write a comment above whatever it is you're
documenting. That's it! (No special /x% or similar to

identify document comments)
Generate documentation with godoc

There are no special identifiers, e.g., @param .
The idea here is your variables should be named
clearly enough that these are not necessary

CS 677:Big Data

12

lypes

AS you've seen, go uses type inference to figure out

what the type is for each variable
We can be explicit about the type if we want

Basic types:
bool
string , rune
int , uint
byte
float32 , floatb64

CS 677:Big Data

13

Conditionals

a := 35
if a > 64 {
fmt.Println("Bigger than 64!")
} else if a > 32 {
fmt.Println("Bigger than 32!")
} else {
fmt.Println("Not bigger than 32 or 64!")
by

Supportfor if , else if ,and else

No parentheses

Unlike C, Java, Python, there is no ternary if in the language

(something ? true : false)

CS 677:Big Data

14

Loops

There is only one type of loop: for

// The syntax we're used to, just without parentheses:
for 1 := 0; 1 < 100; i++ {

fmt.Println(i)
}

// This is more like a 'while' loop:
i:=0
for 1 < 100 {

fmt.Println(i)

i=1+1

3

// "Forever" infinite loop (like while(true) { ... })
for {

fmt.Println("loop™)

break // 'continue' is also supported in for loops!

CS 677:Big Data

15

Functions

Getting func -y

func doSomething() { // Takes no params, doesn't return anything

}

func isThisClassOverYet() bool { // Returns a boolean
return false
b

func addThree(numberOne int, numberTwo int, numberThree int) int {
return numberOne + numberTwo + numberThree
by

// We can omit all but the last type if they are the same:

func addThree(numberOne, numberTwo, numberThree int) int {
return numberOne + numberTwo + numberThree

by

CS 677:Big Data

16

Getting More Advanced

So far we've looked at types, variables, conditionals,
loops, and functions

Apart from switching around the order of things and
eliminating some non-essential functionality, everything
IS probably what we'd expect to see so far.

So we'll look at the things that make Go a bit more
unique... after a break.

CS 677:Big Data 17

Today's Schedule

= (3o Basics
= A break (to write some Go)

= Slightly more advanced Go

CS 677:Big Data

18

Sreak [ime

Make sure you can log onto the CS network with ssh
ssh USERNAME@stargate.cs.usfca.edu

Default password is your student ID

Contact support@cs.usfca.edu if you have problems

Once you're there, you should be able to ssh orionXX
Where XX is anumber from01-12

We'll use this cluster for our projects

Start building the "hello world" of big data: word count
Given a text file, count the number of words and lines

CS 677:Big Data

19

mailto:support@cs.usfca.edu

Today's Schedule

= (Go Basics
= A break (to write some Go)

- Slightly more advanced Go

CS 677:Big Data

20

Back to business

| promised some weirder Go stuff... Let's check it out.

CS 677:Big Data

21

Structs

Go does not have classes. A struct is the closest
relative:
type LogEntry struct {
accessTime time.Time

userIP net.IP
pageURL url.URL

You can still write object-oriented programs, but the
data structures and functions are defined separately

CS 677:Big Data

22

OOP With Receliver Functions

type Person struct {
firstName string
lastName string
age int

}

// This 1s like a Java .toString() method:
func (p Person) String() string {
return fmt.Sprintf("Hello, my name is %s %s! I am %d years old. Bye!",
p.firstName, p.lastName, p.age)

}

func main() {
bob := Person{"Bob", "Bobberton", 38}
fmt.Println(bob)

CS 677:Big Data 23

Visibility

Like Java, you can control function/method visibility

Functions are either exported or unexported
Or in other words, visible outside their package
Not every function has to belong to a class like in
Java, so we deal with package scoping instead

Capitalized() = exported
As our String() function was inthe previous
example

unCapitalized() = not exported

CS 677:Big Data 24

Creating an Array

Arrays behave similarly to other languages. As usual, the
declaration looks a bit different:

var nums [100]int

nums[0] 24

nums[1] 2e

nums[99] = 1000

//nums[100] = 10 (will not compile -- out of bounds!)

= Indexes are 0-based and work as you'd expect.

= Each element is set to their data type's default initial value (O for int)

CS 677:Big Data

25

terating: len()

We can iterate through an array similarly to how we would
in C/Java. Use 1len() to determine its length:

for 1 := 0; 1 < len(nums); i++ {
fmt.Printf("%d %d\n", 1, nums[i])
}

On a related note: go only supports ‘postfix increment’
i++
Cannot be used as an expression (i.e., a := i++ IS NOt
allowed)

CS 677:Big Data

26

Ranges (“for each” loop)

var nums [100]int

nums[0] 24

nums[1] 2e

nums[99] = 1000

//nums[100] = 10 (will not compile -- out of bounds!)

for 1, value := range nums {
fmt.Printf("%d %d\n", i, value)
by

= Note: range is akeyword. It does not take parameters.

CS 677:Big Data

27

Unused Variables

Saywe wanta for each loop but don't need the index:

// This won't compile...

for i, value := range nums {
fmt.Printf("%d\n", value)

by

Use _to throw away (ignore) a variable:

for _, value := range nums {
fmt.Printf("%d\n", value)
by

CS 677:Big Data

28

Pointers

= \WWhen variables are passed to a function, a copy is
made

= |f we want to be able to change a variable from inside a
function, we can use pointers

// Takes in a pointer to an array of 100 ints:
func printArrayPointer(arr *[100]int) {
for _, value := range arr {
fmt.Printf("%d\n", value)
¥

}

printArrayPointer (&nums)
// Any changes to nums made in printArrayPointer WILL be visible here

CS 677:Big Data

29

Array Sizing

= Thus far, you've seen us setting an explicit size for the
arrays being passed to a function.

= Umm, is that required?
= Yes. &

= But don't worry. It's not a big deal...

CS 677:Big Data

30

Slices

= Arrays are always a fixed size

= o resize an array, we can use a slice:

// [] indicates a slice (note no size is given)
func printArray(arr []Jint) {
for _, value := range arr {
fmt.Printf("%d\n", value)
by

CS 677:Big Data

31

Slices vs Arrays [2/2]

= GO's arrays are a lot like Java's
= You use them, but not that often

= Arraylist (or other implementations of List<>)are whatwe
use more in Java

= In go, you'll see slices being used very frequently

= So whatis a Slice?
= A pointer to an array

= A size

= A capacity

CS 677:Big Data

32

Slicing and Dicing

Use them to create "views" of your arrays:

// Create a slice with the first 10 elements of 'nums':
chopChop := nums[1:10]
for _, value := range chopChop {
fmt.Printf("%d\n", value)
b

Or we can create a new, empty slice:

slicey := make([]int, 0, 100)
// len(slicey) 0
// cap(slicey) 100

CS 677:Big Data

33

In Memory

Slices are "views" of arrays: when you re-slice a slice,
you're just changing where the pointer points in the

array!
If you change the underlying array, the slice contents
change too!

A slice's capacity is fixed since it is based on its backing

array
BUT we can resize a slice easily!

someSlice = append(someSlice, someNewThing)

CS 677:Big Data 34

Reslizing

When we append to a slice, internally we are:
Checking if we've exceeded the array capacity. If so,
allocate a new slice with a backing array that's double
the size

make

Copy the elements over to the new slice
copy

Return the new slice!

Slices have a "slice header” that's basically a struct with
this information included

CS 677:Big Data

35

Pointers after Resize

What happens if your backing array gets resized? Are

the old “slice pointers” updated?
No. They still point at old data. The Go garbage
collector won't delete it until it is unreferenced

This sounds horrible, but in practice you probably won't

pass pointers to slice elements around
Generally you pass the slices around your code, so
they always contain up to date pointers

CS 677:Big Data 36

Go Maps

Go has a built in Map, my favorite data structure of all time:

|_et's create one:

myMap := make(map[string]int)

/* I |
| \--> value's type
\--> key's type

*/

And put something in it: myMap["test"] = 42

CS 677:Big Data

37

°re-Populating a Map

= We can create a map and add entries to it at the same time:

myMap := map[string]int{

"thingl": 1,
"thing2": 2,
"thing3": 45,
"thing4": 99,

"something else": 10000,
= Don't forget the comma on the last linel (,)

= By the way: you can auto-format your code like above by
running go fmt

CS 677:Big Data

Adding to a Map

ages := make(map[string]int)
ages["matthew"] = 45
ages["alice"] = 22
ages["joe"] = 99

ages["joe"] = 95 // The entry for 'joe' is updated w/ new value

Print functions can handle maps automatically:

fmt.Println("Here's everyone's ages:", ages)
Here's everyone's ages: map[alice:22 joe:128 matthew:45]

CS 677:Big Data

39

Deleting from a Map

The built-in delete functionremoves items from the map.
len reports it size, same as arrays or slices:

ages["matthew"] = 99

fmt.Printf(">>> %d\n", len(ages))

>>> 3

delete(ages, "matthew")

fmt.Printf(">>> %d\n", len(ages))
>>> P

CS 677:Big Data

40

Checking for ltems

We can use a 2nd optional return value when retrieving
from a map to determine whether the element is present or
Nnot:

lookup := "bill"
_, present := ages[lookup]
if present {
fmt.Println("We have " + lookup + " !I')
} else {
fmt.Println("There is no " + lookup + " here :=(")
by

CS 677:Big Data

41

A Common Pattern for "Contains”

= You can use the "comma ok” idiom to test for keys in a
set:
// Assume we have a map of things:

1t thing, ok := things[foo]; ok {
// 'foo' was 1n the map

// or, 1f we don't care about the value:
if _, ok := things[foo]; ok {

// 'foo' was in the map
by

CS 677:Big Data

42

Default Values

Let’s try accessing an item that doesn't exist in the map:

fmt.Println(ages["bobby"])

What happens? An error? Runtime exception? Panic?

The default value for the datatype (int in this case)is
returned.

CS 677:Big Data

43

Implementing a Set

= In Go, a setis a map with any type of key and a bool for its value:

professors := map[string]bool {
"Alark" : true,
"Dave" : true,
"Sophie" : true,

¥

if professors[name] {
// The professor exists
¥

= Since the default value of the set will be false , checking for a non-
existing entry will return false

CS 677:Big Data

44

What Can be a Key?

We can use anything that's comparable as a key. This

iIncludes:
boolean, numeric, string, pointer, and structs or arrays
that contain only those types

With structs, all the members are used to evaluate
equality

We cannot use slices, maps, and functions as keys

CS 677:Big Data 45

Strings and Runes

All go source files are UTF-8 and the language provides
great support for Unicode
Strings are represented as arrays of bytes

But that is problematic if we have characters outside
the usual ASCII range

Most of the time, we interpret strings arrays of rune
instead (32-bit integers)

CS 677:Big Data

46

Runes

package main
import "fmt"
// Let's check out the difference between these two loops...
func main() {

const str = "l § w"

fmt.Println("-— " + str + " —--—-")

for 1 := 0; 1 < len(str); i++ {

fmt.Printf("%02d %c\n", 1, str[i])
¥

fmt.Println()

fmt.Println("-—— " + str + " ——-")

for 1, runeValue := range str {
fmt.Printf("%02d %c\n", 1, runeValue)

by

CS 677:Big Data

Okay, okay!

= This is alot to take in, and honestly, it's probably better
to play with it a bit.

= Let'swork on Lab 1!

CS 677:Big Data

48

