CS 677: Big Data

Scaling Out

Lecture 3

Today's Schedule

= Breaking down the log analyzer
= Designing a better approach

= Scaling out

= Cluster Orchestration

CS 677: Big Data

Today's Schedule

= Breaking down the log analyzer
= Designing a better approach

= Scaling out

= Cluster Orchestration

CS 677: Big Data

The Log Analyzer

= We already discussed a high-level approach for the log

analyzer assignment last class
= (or, how we would do it in Java)

= Would someone like to share their approach?
= Ok, letme go first...

CS 677:Big Data

B3aby's First Log Analyzer

= Time to get out your code review rocket launchers!

// Okay, I was too lazy to do the whole assignment. Whoops.

file, _ := 0s.0pen("log.txt")
bytes, _ := io.ReadAll(file)
lines := strings.Split(string(bytes), "\n");

ips := make(map[string]int)

for _, line := range(lines) {
ip := strings.Split(line, "\t")[2]
ips[ip] = ips[ip] + 1

¥

fmt.Println("There are", len(ips), "unique IP addresses in the file")

CS 677:Big Data

Problems

No error checking
If we have a billion-line dataset (which is actually not
that huge by the way!) what are the chances a few
records are corrupted?

Reading the entire file into memory
This is a HUGE problem!

File is not closed when we're done (minor)
Hard-coded path

CS 677:Big Data

Comparing Approaches

| tested two versions of this: one that reads the entire

file iInto memory, and another that reads line by line
1.2 GB log file

The "allin memory” version took 3.5s to run

The “line by line" version took 2.2s to run

On my laptop (with 16 GB of RAM), both programs work
Onan EC2 VM with 1.5 GB of RAM, the first program

crashes!
All'you get for an error is “killed” on Linux

CS 677:Big Data

Your Approach

= How did you tackle this assignment?

CS 677:Big Data

JTest Dataset

| mentioned that | wouldn't share a "full size" dataset with
you...

Let's see how fast your implementation is!

Check out /bigdata/mmalensek/logs ON orion02
ssh tO USERNAME@stargate.cs.usfca.edu

Then ssh to orion0?2

There are three options: small.log, medium.log ,and
large.log

CS 677:Big Data

Today's Schedule

= Breaking down the log analyzer
= Designing a better approach

= Scaling out

= Cluster Orchestration

CS 677: Big Data

10

Using our Imagination

= If | gave you infinite time or resources for this lab, you
could come up with a better approach

= Let's hear your ideas!
= And let's think about what the downsides of these
ideas are

CS 677:Big Data

11

The Message

At this point | think you probably get it
We can design a really awesome log analyzer but
there's always going to be a way to overwhelm it

The best we can do is design a scalable log analyzer
At least then we can keep adding more servers as the
problem gets bigger

And to truly scale, we have to distribute the problem to

more than one machine
Better algorithms and hardware still matter, even in
this case

CS 677:Big Data

12

Today's Schedule

= Breaking down the log analyzer
= Designing a better approach

- Scaling out

= Cluster Orchestration

CS 677: Big Data

13

Scalability

Humanity is storing more and more data at higher and
higher resolutions

The systems we design should be able to handle these
growing workloads

Managing Big Data, Step 1: use software that can

actually handle it
Mind-blowing insights here, folks

Imagine if | came into class and opened up an Excel
spreadsheet onday 1...

CS 677:Big Data 14

Scaling up vs. Scaling out

= Scaling up
= Faster CPUs
= Larger RAM modules

= Bigger disks

= Scaling out
= More cores/CPUs

= More machines

= More disks

= Which one do we pick? Is there one answer?

CS 677:Big Data

15

Why we (usually) don't scale up

We can't just wait for our hardware to get faster
In fact, huge leaps in performance are just not
happening anymore
Making chips run faster and faster consumes too
much power and produces too much heat

Put simply, we can scale out now.

Scaling out also means flexibility: if we use the cloud (or
the ideas behind it), then we can grow or shrink our
resource pool as necessary

CS 677:Big Data 16

Parallel Computing & Storage

Architecturally, we need parallel systems

Parallel computing can be summed up with a simple
motto:
"Divide and conquer”

Let’s take a problem, break it into smaller pieces, anad

then have multiple cores/processors/machines work on
it all at once

Challenge: getting all these machines to work together

CS 677:Big Data

17

Today's Schedule

= Breaking down the log analyzer
= Designing a better approach

= Scaling out

= Cluster Orchestration

CS 677: Big Data

18

Working lTogether

If we want to scale out, then we need to get multiple
machines to work together

We can orchestrate computations and storage
operations over a cluster of machines

How do we do this coordination? The network!

CS 677:Big Data

19

-xchanging State

Distributed systems do not have shared memory

Instead, we rely on messages for exchanging state

between nodes
Message — packet of information with a well-defined

wire format
State — events occur that mutate the system

Node - one participant (machine) of the distributed
system

CS 677:Big Data

20

Sending a Message

Information to be shared is constructed in memory on
Node A

The data is encapsulated and serialized for transfer
Well-defined wire format

The message is sent across the network

Node B receives the data, reconstructs the message,
and applies the information/event to its own state space

CS 677:Big Data

21

TCP

We use the Internet Protocol (IP) Suite for a majority of
our communications

For reliable delivery, we use the Transmission Control
Protocol (TCP)

Modeled as a stream of bytes

Packets will reach their destination (eventually...) and
the contents are verified
Retransmit when a failure/corruption occurs

Packets are received in order

CS 677:Big Data

22

TCP Welirdness

The first unintuitive thing about (TCP) sockets is there is
no concept of a "'message”

Instead, everything gets read/written as streams of
bytes
Not all the bytes will come in at the same time,
although order is guaranteed with TCP

We generally need to use fixed-size messages or prefix
them with a length to know what to expect

CS 677:Big Data 23

Simple Messaging [1/3]

A common message format:
[MESSAGE SIZE][MESSAGE PAYLOAD]

Once you've unpacked the message payload, it can
contain more fields

For example: message type, version number, flags,
etc.

This allows for a layered approach:
Network code
Message creation code

Pass through a chain of handlers

CS 677:Big Data

24

Simple Messaging [2/3]

Message Size

Message Payload

Message Size

Message Payload

CS 677: Big Data

Message Type

Version

Message Data

25

Simple Messaging [3/3]

= |f you don't need advanced features, size-prefixed
messages work well
= Exceptions:

= You'd like to avoid reading the entire message before
you start processing it

= You don't even need to process the whole message
(perhaps you are forwarding it somewhere else)

CS 677:Big Data

26

Serialization

Serialization transforms an object, structure, or

application state into a format for transmission
(and often storage to disk)

Most common: binary formats
Better performance

When you receive a serialized message, transforming it
back into its original representation is called
deserialization

CS 677:Big Data

27

Automated Serialization

Most languages have built-in serialization functionality
(Java Serializable, Python pickling, etc.)

My advice: don't use for anything but prototyping
These types of serialization are language-specific,

brittle, and can lead to application errors
Memory leaks

Broken messages between versions

May produce large object graphs
In some applications you'll speed ~50-70% of your CPU
time serializing / deserializing messages

CS 677:Big Data

28

Serialization in Go

Go provides a built-in serialization format: gobs

Transforms data types (often used with structs) into
bytes

Can be written to disk, network, etc.
Note: only works with other go-based software

Another common format: protocol buffers
Originally designed by Google for internal use

Allows broad interoperability

Java/Python/etc clients/servers can interact with
go seamlessly

CS 677:Big Data

29

Our Approach

We'll use protocol buffers in this class
Decent format, widely used, better compatibility than
gobs

Each message will be prefixed with a size

You'll send one (or maybe a few) types of protobuf
messages

... BUT they will be wrappers that encapsulate many

different sub-types of messages
In other words, protobufs will handle encoding the
message type for us

CS 677:Big Data 30

Compiling

You'll use the protoc compiler to generate go code
from .proto files

Design your protocol, generate code, and then either
.Marshal() Or .Unmarshal() your data

Recommendation: build helper classes/functions that
handle creating these for you

They can be kind of... verbose to instantiate inline
every time you need them

CS 677:Big Data

31

Sending

// ... a message wrapper has been constructed ... //
serialized, err := proto.Marshal(wrapper)

prefix := make([]byte, 8)
binary.LittleEndian.PutUint64(prefix, uintb64(len(serialized)))
util.WriteN(conn, prefix)

util.WriteN(conn, serialized)

// Here, util.WriteN will call conn.Write in a loop
// This ensures *ALL* data is sent!

CS 677:Big Data

32

Recelving

prefix := make([]byte, 8)
conn.Read(prefix)

payloadSize := binary.LittleEndian.Uint64(prefix)

payload := make([]byte, payloadSize)

util.ReadN(conn, payload)

// util.ReadN reads the data in a loop, similar to WriteN

wrapper := &Wrapper{}
err := proto.Unmarshal(payload, wrapper)

// Ready to determine the type of 'wrapper' and then
// process the message...

CS 677:Big Data

33

Determining the Message Type

switch msg := wrapper.Msg.(type) {
case *messages.AwesomeMessage:
// process ...
case *messages.NeatMessage:
// process ...
case nil:
log.Println("Received an empty message!")
default:
fmt.Errorf("Unexpected message type %T", msg)

CS 677:Big Data

34

TCP, Messaging, and Protobufs

= [n Lab 3, you will put these concepts into practice to
create a file transfer suite that is somewhat similar to
File Transfer Protocol (FTP).

= You'll use this code to help you implement Project 1

= But first, let's check out an example application that also
uses Protocol Buffers...

CS 677:Big Data

35

