CS 677 Big Data
Research Papers

Lecture 4

Reading Research Papers

= Research papers tend to not be the most riveting
reading material

= They can be difficult to understand at times

= You might even feel that some papers are impossible to

iInterpret correctly
= ...andyoud be right!

CS 677:Big Data

Why so hard to understand?

So, why aren't researchers better writers?

Easiest answer: it's hard to write about these topics.
They're complicated!

Sometimes complexity is a “shield” against lazy
reviewers

Reviewers are busy and would love to have a reason
to reject your paper ASAP

Funding, promotions, etc. are often tied to publications

CS 677:Big Data

Some Advice

It's okay to not understand a paper 100%
In some cases, it's nearly impossible unless you also
get a copy of the writers' brains

Many times, you have to use your best guess to
determine how things actually worked

Don't forget to search online. Maybe they published
some slides or additional material you tap into

CS 677:Big Data

AS You Read

Take note of things that are confusing
Look for areas where details are left out
Focus on uncovering insightful tidbits of information

Think about the trade-offs being made and how you
could tackle the same problem differently

CS 677:Big Data

The Motivation for Doing This

Why even bother with reading these?!

If you are on the cutting edge of industry, you will still
have to read papers (and maybe write them)

Written communication and presentation is crucial for

your careers
You will be amazed at how much time you spend
writing docs and presenting your work

| promise not to worry too much about the minor details
(grammar, spelling). Just get the idea across!

CS 677:Big Data

Reading Strategies

= Check out Keshav's "How to Read a Paper” on the

schedule page
= Proposes a 3-pass approach

= Thisis a good way to break the paper down

= Big ldea: don't read from start to finish

CS 677:Big Data

Reading Steps

Figure out what the authors are trying to do

Read abstract, conclusions, section headings, and figure
captions

Note any unknown jargon

Determine what components their system or approach

has

Then figure out how the components interact. Sometimes it
helps to draw a picture

Dive into the details
Ok, the paper uses algorithm X to provide its main
contribution. How does the algorithm work?

CS 677:Big Data

L et's try this.

Let's have a “reading break” so we can skim over the HDFS
paper (if you haven't read it already).

Then I'll do a demo research presentation.

CS 677:Big Data

DISCUSSION

What did you think?

What new concepts/terminology was introduced”?
Can we fully grasp how the system works?

What trade-offs are being made here?

How would you change the design if you could take your
own approach?

CS 677:Big Data

10

Before we Start

= Thisis a "demo” of a research paper presentation.

= This is one approach. You don't have to do it like this (but
you definitely can!)

CS 677:Big Data

11

Talk Outline

1. HDFS Background
2. System Design & Components

3. Benchmarks

CS 677:Big Data

12

Talk Outline

1. HDFS Background
2. System Design & Components

3. Benchmarks

CS 677:Big Data

13

History

HDFES was created by Yahoo! in ~2006 and released
under the Apache open source license

25,000 nodes, 25 PB of datain ~2010
Heavily inspired by Google's GFS

s the storage backbone for many legacy and modern

big data processing frameworks
Higher-level abstractions can be built on top of HDFS.
For example, HBase provides tabular storage and
query support

CS 677:Big Data

14

Hadoop

Traditionally, HDFS was paired with Hadoop, Yahoo!'s

open source MapReduce implementaiton
Tight coupling between storage and computation

HDFS can be used separately from Hadoop
And technically, later versions of Hadoop evolved a
bit from the old MapReduce model

CS 677:Big Data 15

The Ecosystem

Avro — serialization format
HBase — Column-oriented storage
Hive — Data warehouse

Hadoop MapReduce — distributed computation
framework

Pig — dataflow language

Zookeeper — Cluster management and coordination
Spark — lterative, in-memory processing

Storm — streaming data processing

CS 677:Big Data

16

Goals and Non-Goals

Provide a distributed file system interface that is similar

to standard POSIX file interface
(what's POSIX?)

Performance is more important than exact

compatibility, though.

Up front, HDFS does not:
Use RAID / striping mechanisms. Replicas provide
fault tolerance

Distribute metadata:; all metadata for files is stored on
a single node.

CS 677:Big Data

17

Relevance

Hadoop + HDFS were used heavily up to about 2015 or
SO, but the computation side of things (Hadoop) has

seen extensive evolution
Tools such as Spark have largely superseded Hadoop

HDFS remains relevant today: used as a backbone to
store large blobs of data for higher-level abstractions

Alternatives:
Cassandra, HBase (slightly different data model)

Amazon S3 (and other cloud competitors)

CS 677:Big Data 18

Talk Outline

1. HDFS Background
2. System Design & Components

3. Benchmarks

CS 677:Big Data

19

Main Components

NameNode
= (and Secondary NameNode)

File blocks
DataNode

Others:
= CheckpointNode

= BackupNode

= Balancer

CS 677:Big Data

20

Main Components: Our Focus

= We won't cover the Secondary NameNode,
CheckpointNode, BackupNode, or Balancer.

= Fault tolerance for the NameNode has changed

significantly from the publication of this paper

= Has had some twists and turns over the years and not
all the approaches worked well

CS 677:Big Data 21

Architecture Diagram

Metadata (Name, replicas, ...):

Metadata,ops”{ Namenode /home/foo/data, 3, ...

Block ops

Read Datanodes Datanodes

] | |
.\ Replication L

Blocks

e \J \)

Rack 1 vvrite Rack 2

CS 677:Big Data

22

NameNode

Manages a Namespace
Metadata: files, directories, permissions, quotas, etc.

Stored entirely in RAM

Maintains an on-disk journal of changes that can be
replayed when the cluster restarts

Main purpose: providing the file system hierarchy and a
file:node mMapping
Uses DataNode IDs, not host names / ports / etc

Manages cluster health: nodes failing, replication, etc.

CS 677:Big Data 23

BloCKS

Each file stored in HDFS is composed of one or more

blocks
Block sizes are configurable (both as a default setting
or on a per-file basis)

Blocks are distributed and replicated across DataNodes

Only appends are allowed: no in-place edits
Mirrors GFS" approach

CS 677:Big Data 24

Accessing Blocks

Blocks are not immediately available after storage
Heartbeat updates inform the NameNode of the new
blocks

During file retrievals or MapReduce jobs, replicas can

stand in for the original file
Better data locality, more parallelism

If an append operation is underway, the blocks can be
locked to allow read-only access

CS 677:Big Data 25

Managing Metadata

Each block entry at the NameNode takes space; since
the Namespace is an in-memory structure the
NameNode must have lots of RAM

If many small files are stored in the system (such as from
the output of MapReduce jobs) index space is

consumed rapidly
Solution: HAR file (Hadoop Archive) that bundles the

small files into one large, indexed file
Kind of like a .zip

CS 677:Big Data 26

Fault Tolerance

Yahoo found that with three replicas, the probability of
losing a block during one year is less than 0.005.

According to their tests, about 0.8 percent of the nodes
fail per month.

With short heartbeat times, recovery is fast (and scales
very well as the cluster expands)

CS 677:Big Data

27

Block Placement [1/2]

HDFS is aware of “racks” and “"datacenters”, allowing
replicas to be geographically distributed

First two replicas go to different racks

Additional replicas are placed randomly
(but no two file replicas can be placed on the same
physical machinel)

CS 677:Big Data

28

3lock

Placement [2/2]

]

— Rack OU

4

— Rack 1

U

' pNoo [DNo1 [DNoZ2 [DN10 /[DN11] [DN12 |

CS 677: Big Data

29

Replication

Block Replication

Namenode (Filename, numReplicas, block-ids, ...

/users/sameerp/data/part-0, r:2, {1,3}, ...
/users/sameerp/data/part-1, r:3, {2.4,5}, ...

Datanodes

CS 677:Big Data

30

DataNodes

DataNodes are locked to a specific NameSpace ID
Restart the cluster with a new ID? DataNodes will not

start up
Helps ensure data safety

On startup, the node is assigned a NodelD

Each block that a DataNode stores is represented as

two files on the local host's (native) file system:

The data itself
No extra padding if the full block is not used

Metadata, including the block checksum

CS 677:Big Data

31

Heartbeats

Each DataNode sends a heartbeat every 3s (by default)

to the NameNode to inform it of any file changes
Must be frequent or the system will take a long time to
converge on a steady state

If necessary, the NameNode will respond with

Instructions to replicate/remove blocks, shut down, or

send a block report
In other words: DataNodes don't actively listen on a
port for N\ameNode instructions

CS 677:Big Data 32

Storage Flow [1/2]

HDFS Client

__

Cluster
NameNode

addBlock (src)
i write
i DataNode
i N
. Data e —
i Pipeline DataNode
i DataNode

Blocks
Received

——

CS 677:Big Data

33

Storage Flow [2/2]

Note that the NameNode receives no file data!
It does choose where the blocks go, though.

The client only sends the blocks once. DataNodes
handle pipelining to the others

During the heartbeats, DataNodes will report the new
blocks

User can do an hflush operation to wait for all pending
operations to be committed

CS 677:Big Data 34

Snapshots

HDFS supports creating a single snapshot of the
current namespace state

Produces duplicate metadata on the NameNode
Produces duplicate files on the DataNodes

Allows the cluster to roll back to a previous state but is
expensive!

CS 677:Big Data 35

Talk Outline

1. HDFS Background
2. System Design & Components

3. Benchmarks

CS 677:Big Data

36

Test Setup

3500 node cluster

2 quad core Xeon processors @ 2.5ghz
16 GB RAM
4 directly attached SATA drives (one terabyte each)

1 gbps Ethernet

CS 677:Big Data

37

Benchmark 1:1/0

Used the DFSIO benchmark to measure |0 speed per
node

"Empty” cluster:
DFSIO Read: 66 MB /s per node
DFSIO Write: 40 MB /s per node
‘Busy” cluster:
Busy Cluster Read: 1.02 MB/s per node
Busy Cluster Write: 1.09 MB/s per node

CS 677:Big Data

38

Benchmark 2: Sorting

HDFS 1/0 Bytes/s

Bytes Nodes Maps Reduces Time /88regate Per
(TB) (GB) Node
(MB)

1 1460 8000 2700 62 s 32 22.1

1000 3658 &80000 20000 58500s 34.2 9.35

CS 677:Big Data

39

Benchmark 3: NameNode Performance

Operation Throughput (ops/s)
Open file for read 126 100
Create file 5600
Rename file 8300
Delete file 20 700
DataNode Heartbeat 300 000

Blocks report (blocks/s) 639 700

CS 677:Big Data 40

Conclusions [1/2]

HDFES has enjoyed widespread use, and at this point is
very solid/reliable

Also “boring”... but maybe in a good way?
Has several well-documented weaknesses (the paper

authors don't try to hide them)
Resource usage at the NameNode

NameNode failures
Handling small files

etc...

CS 677:Big Data

41

Conclusions [2/2]

There hasn't been a ton of development in this area,

since it's a largely "solved” problem
HDFS (or its competitors) is good enough for most
small or medium size organizations

Most large organizations (Big Tech) have an in-house

solution that usually supports:
Distributed namespaces (and failures)

Small files

Random access patterns, writes

Additional security measures

CS 677:Big Data

42

One Last Thing

You might be wondering... why break files into blocks
anyway”
Sure, it spreads things out... but at a large enough

organization, you'd have enough large files that things
would gradually even out over time

The REAL reason: it helps push the ‘parallelizable

portion” of our algorithm toward 100%
Your algorithm has to handle files that are split up...
and that means it's embarrassingly parallel to
process!

CS 677:Big Data

43

