CS 677 Big Data
Fault Tolerance and Consensus

Lecture 6



Fault Tolerance + Consensus?

It may seem a bit odd to see these two topics presented at the same
time
"handling failures and agreeing on stuff”

The reason is simple: the way we handle failures in distributed systems is

with some type of replication
There are many ways to achieve replication

Once we have replicas of data stored at different nodes, we can have

diverging views of that data
Maybe a node goes down, misses some updates, and comes back up

We need to find ways to get them to all agree, even when failures occur

CS 677:Big Data



Today's Schedule

= Failures and Replication
= Reaching Consensus

= Consensus as a Service

CS 677:Big Data



Today's Schedule

= Failures and Replication
= Reaching Consensus

= Consensus as a Service

CS 677:Big Data



The Great Unknown

It's hard to be sure about anything
True in general, but even more true with distributed
systems

s a node down, or is the network slow?
Did we shut the service down, or did it crash?
IS the system in a steady state?

If a network breaks into several partitions and nobody is
around to hear it, does it make a sound?

CS 677:Big Data



3eing a lotal Failure

Failures are very common when dealing with large

datasets
Very common? More like unavoidable

If tornadoes, space pirates, and earthquakes are all
hitting your datacenter at the same time, what to do?

What if we just make lots of copies of everything?

CS 677:Big Data



Replication

Maintaining replicas is a great way to make our systems
resilient to failures

The general rule: create three replicas for each object

you're storing
At least one of those replicas should be in a different

physical location, if possible
We can also leverage replicas as a cache to improve

performance
If a node is closer, has less load, etc. then we can use

it instead of the original copy

CS 677:Big Data



But iIsn't that Wasteful?

Yep, now if you have a 1 1B dataset, it takes 3 TB

Still, you do benefit from having more locations for each
file

Increases data locality for computations
The original GFS design stored multiple copies of each
file, but later versions took advantage of parity files to

decrease the space wasted
Used for error correction on media such as CD-ROMSs,
but also allows reconstruction of missing file chunks

CS 677:Big Data



Parity Algorithm

= Let's imagine we have a 100 MB file broken into 5 chunks (20 MB per
chunk):

o || O

o||O0|[O
—
o
—

o || O

oO||O||O||O||OC
o
o||O||O

= |f we want to be able to recover a missing chunk, we can perform an
XOR over each bit to produce a parity stripe

CS 677:Big Data



Parity Chunk

10f[1]/ 1| 1[|lo]/o]|1 0
Of/1|[1/[o]/O[/O||1]]1 1
o|[1|{lo|[1|/o||0|/0]lO 0
o||1|[1[[1[/l1]|lo]|[1]|0 0
100/ 1| 1[[O][1]|1 0

XOR 1o |1 |[1||Of|[1[[O|[1|[1|[.]|].] .| 1

= Now if we lose any of the original chunks, we can use the parity chunk

to rebuild it
= (as long as all the other chunks are available)

CS 677:Big Data

10



Faulty Hardware

Entire servers aren't the only thing that can fail

Hard disk drives have many awful failure cases
Bad sectors can develop over time

SSD cells can wear out

RAM can have silent bit flips
Your amazing file gets corrupted in memory, then you
save it to the disk...

CS 677:Big Data

11



Flle Integrity

Most file systems don't actually have safeguards
against bit rot and silent corruption

Seriously.
/FS and a few other file systems can maintain

checksums for your files
And use parity data to reconstruct them in the case of
a failure

We need to be able to detect and repair corrupted files

CS 677:Big Data 12



Thought Experiment: Replication

We had one problem: fault tolerance. If we solve it with
replication, what problems do we have now?

CS 677:Big Data

13



Managing Replicas

Any time we start replicating data across multiple machines,
things start to get complicated

What happens when the replicas get modified at the same
time?
Approach #1: Figure out the latest modification and use that

as the “real” state of the replica
But how do we synchronize time between machines?

Approach #2: Distributed transaction support
Like what you might see in relational databases

Downside: latency from coordination and locking

CS 677:Big Data 14



Reaching Consensus

Solving this problem with replicas is just one example of
coming to a consensus in distributed systems

Some other examples:
Clock synchronization, broadcasting, leader election

Reaching a consensus can be difficult due to:
Heterogeneity

Geography (...latency)

Hardware and software failures

CS 677:Big Data 15



CAP Theorem [1/3]

Deals with the guarantees that can be provided by
distributed systems, especially during failures

Observed by Eric Brewer

Co-founder of Inktomi
Search engine tech, ISP software

Professor at UC Berkeley
Formalized in 2002 with a proof by Gilbert and Lynch
Brewer's Conjecture and the Feasibility of

Consistent, Available, Partition-tolerant Web
Services. SIGACT. 2002.

CS 677:Big Data

16



CAP Theorem [2/3]

= Consistency:
All nodes see the same data.

= Avallability:
A partial failure does not stop the system.

= Partition Tolerance:
The system can handle network partitions.

CS 677:Big Data

17



CAP Theorem [3/3]

Important: this isn't a “pick two of the three” kind of

situation
A mistake that is made frequently

Rather, the CAP theorem describes what a system does
when it encounters a network failure (partition)

If everything is operating normally, the system can
provide both high availability and consistency

CS 677:Big Data

18



CAP Classifications

AP systems: highly available
Can result in inconsistent views of the dataset

Shopping cart

CP systems: highly consistent

Can experience downtime if a partition occurs
That's okay, because we're assuming it's better to
be offline than cause inconsistencies!

Billing system

CS 677:Big Data

19



Consistency-Latency Tradeoff

Weak Consistency Strong =———-
Conflict Resolution Distributed Consensus Distributed Transactions
Conflicts are allowed, and Majority of replicas must All replicas must agree on a
may be resolved by client agree on a single consistent consistent value to commit;
applications value roll-back on disagreement
» Dynamo » Chubby Lock Service * F1
* Voldemort ) s ZooKeeper ) L Spanner y
Low Latency High se——

CS 677:Big Data 20



Today's Schedule

= Failures and Replication
- Reaching Consensus

= Consensus as a Service

CS 677:Big Data

21



Reaching Consensus

There are two popular ways to get nodes to agree on

something:
Paxos

Raft

We're not a distributed systems class, so we won't go
into these in depth (or build them)

Advice for 99% of situations: don't invent your own
algorithm, ignore Paxos, and use a Raft library

CS 677:Big Data 22



Paxos

Described in The Part Time Parliament by Leslie
Lamport

Describes a fictional parliamentary consensus protocol

used by legislators in Paxos, Greece
Took around 10 years to get published... it was a bit
unconventional

Used frequently to achieve distributed consensus

Really, really hard to get right

CS 677:Big Data 23



Raft

Raft is an attempt to build a more understandable
consensus algorithm

Each component can be explained in isolation
Leader, candidate, follower

Uses strong leaders
One leader per term

When a failed node comes back up, it assumes that it
is a follower and waits for a timeout rather than trying
to become a leader immediately

Each leader election increments the term number

CS 677:Big Data

24



Raft: Components and Flow

Times Out .
Receives

Times Out Majority Vote

T\ N\

Starts/Recovers
—)( Follower (Candidate) [ Leader ]

Discovers
New Leader

Discovers Server with Higher Term

CS 677:Big Data

25



Today's Schedule

= Failures and Replication
= Reaching Consensus

= Consensus as a Service

CS 677:Big Data

26



/00Kkeeper Atomic Broadcast

Z00keeper is often used to coordinate between
components and detect failures

Supports atomic broadcast, where not only consensus

must be reached but event ordering matters
/ZAB

Three phases: discovery, synchronization, broadcast

CS 677:Big Data 27



Chubby

Chubby is used to coordinate between components at

Google
Locking, name services, config store

Partially inspired by the VMS operating system
General purpose, global lock service

Provides coarse-grained locking capabilities and simple

storage facilities
Based on a file system model

CS 677:Big Data

28



Chubby

“Chubby is intended to operate within a single company,
and so malicious denial-of-service attacks against it are
rare. However, mistakes, misunderstandings, and the
differing expectations of our developers lead to effects
that are similar to attacks.”

— Mike Burrows,

Google, Inc.,

The Chubby lock service for loosely-coupled distributed
systems

CS 677:Big Data

29



Overview

T 5 servers of a Chubby cell
client ' chubby R

application library \Q
client | chubby / ()

master

application . library

1

client processes

CS 677:Big Data



File System Interface

An example: /1s/foo/wombat/pouch

1s —'lock service’

foo —the chubby cell, or instance of the system
= Found via DNS lookup

wombat/pouch —directory and file name
= Files are just arrays of bytes

CS 677:Big Data

31



Abusive Clients

As mentioned, incorrectly using Chubby is similar to an
attack

Initially, the system had no storage quotas
Not intended for a data store

Used for one anyway... 1.5 MB file rewritten for every
client action

Publish/subscribe

Can be used to publish changes, but not the intended
use case

CS 677:Big Data

32



| essons Learned

Developers rarely consider availability
Chubby outages have caused cascading effects!

Be careful with APl design expectations
The system provides an event notification when a

master failover occurs

Should help developers know that they need to
verify the most recent actions

Instead, most applications decided to just crash

Developers want to use their own favorite language

CS 677:Big Data

33



Call Me Maybe: Jepsen

= For alongtime, storage systems made all kinds of
outlandish claims

= Check out Jepsen by Kyle Kingsbury:
= https://aphyrcom/tags/jepsen

= https://jepsen.io

= Breaks down systems’ consistency claims
= Evenincludes illustrations!

CS 677:Big Data

34


https://aphyr.com/tags/jepsen
https://jepsen.io/

