
Fault Tolerance and Consensus

CS 677: Big Data

Lecture 6

▪ It may seem a bit odd to see these two topics presented at the same

time

▪ “handling failures and agreeing on stuff”

▪ The reason is simple: the way we handle failures in distributed systems is

with some type of replication

▪ There are many ways to achieve replication

▪ Once we have replicas of data stored at different nodes, we can have

diverging views of that data

▪ Maybe a node goes down, misses some updates, and comes back up

▪ We need to find ways to get them to all agree, even when failures occur

Fault Tolerance + Consensus?

CS 677: Big Data 2

▪ Failures and Replication

▪ Reaching Consensus

▪ Consensus as a Service

Today’s Schedule

CS 677: Big Data 3

▪ Failures and Replication

▪ Reaching Consensus

▪ Consensus as a Service

Today’s Schedule

CS 677: Big Data 4

▪ It’s hard to be sure about anything

▪ True in general, but even more true with distributed

systems

▪ Is a node down, or is the network slow?

▪ Did we shut the service down, or did it crash?

▪ Is the system in a steady state?

▪ If a network breaks into several partitions and nobody is

around to hear it, does it make a sound?

The Great Unknown

CS 677: Big Data 5

▪ Failures are very common when dealing with large

datasets

▪ Very common? More like unavoidable

▪ If tornadoes, space pirates, and earthquakes are all

hitting your datacenter at the same time, what to do?

▪ …

▪ What if we just make lots of copies of everything?

Being a Total Failure

CS 677: Big Data 6

▪ Maintaining replicas is a great way to make our systems

resilient to failures

▪ The general rule: create three replicas for each object

you’re storing

▪ At least one of those replicas should be in a different

physical location, if possible

▪ We can also leverage replicas as a cache to improve

performance

▪ If a node is closer, has less load, etc. then we can use

it instead of the original copy

Replication

CS 677: Big Data 7

▪ Yep, now if you have a 1 TB dataset, it takes 3 TB

▪ Still, you do benefit from having more locations for each

file

▪ Increases data locality for computations

▪ The original GFS design stored multiple copies of each

file, but later versions took advantage of parity files to

decrease the space wasted

▪ Used for error correction on media such as CD-ROMs,

but also allows reconstruction of missing file chunks

But isn’t that Wasteful?

CS 677: Big Data 8

▪ Let’s imagine we have a 100 MB file broken into 5 chunks (20 MB per

chunk):

▪ If we want to be able to recover a missing chunk, we can perform an

XOR over each bit to produce a parity stripe

Parity Algorithm

CS 677: Big Data 9

▪ Now if we lose any of the original chunks, we can use the parity chunk

to rebuild it

▪ (as long as all the other chunks are available)

Parity Chunk

CS 677: Big Data 10

▪ Entire servers aren’t the only thing that can fail

▪ Hard disk drives have many awful failure cases

▪ Bad sectors can develop over time

▪ SSD cells can wear out

▪ RAM can have silent bit flips

▪ Your amazing file gets corrupted in memory, then you

save it to the disk…

Faulty Hardware

CS 677: Big Data 11

▪ Most file systems don’t actually have safeguards

against bit rot and silent corruption

▪ Seriously.

▪ ZFS and a few other file systems can maintain

checksums for your files

▪ And use parity data to reconstruct them in the case of

a failure

▪ We need to be able to detect and repair corrupted files

File Integrity

CS 677: Big Data 12

We had one problem: fault tolerance. If we solve it with

replication, what problems do we have now?

Thought Experiment: Replication

CS 677: Big Data 13

▪ Any time we start replicating data across multiple machines,

things start to get complicated

▪ What happens when the replicas get modified at the same

time?

▪ Approach #1: Figure out the latest modification and use that

as the “real” state of the replica

▪ But how do we synchronize time between machines?

▪ Approach #2: Distributed transaction support

▪ Like what you might see in relational databases

▪ Downside: latency from coordination and locking

Managing Replicas

CS 677: Big Data 14

▪ Solving this problem with replicas is just one example of

coming to a consensus in distributed systems

▪ Some other examples:

▪ Clock synchronization, broadcasting, leader election

▪ Reaching a consensus can be difficult due to:

▪ Heterogeneity

▪ Geography (…latency)

▪ Hardware and software failures

Reaching Consensus

CS 677: Big Data 15

▪ Deals with the guarantees that can be provided by

distributed systems, especially during failures

▪ Observed by Eric Brewer

▪ Co-founder of Inktomi

▪ Search engine tech, ISP software

▪ Professor at UC Berkeley

▪ Formalized in 2002 with a proof by Gilbert and Lynch

▪ Brewer’s Conjecture and the Feasibility of

Consistent, Available, Partition-tolerant Web

Services. SIGACT. 2002.

CAP Theorem [1/3]

CS 677: Big Data 16

▪ Consistency:

All nodes see the same data.

▪ Availability:

A partial failure does not stop the system.

▪ Partition Tolerance:

The system can handle network partitions.

CAP Theorem [2/3]

CS 677: Big Data 17

▪ Important: this isn’t a “pick two of the three” kind of

situation

▪ A mistake that is made frequently

▪ Rather, the CAP theorem describes what a system does

when it encounters a network failure (partition)

▪ If everything is operating normally, the system can

provide both high availability and consistency

CAP Theorem [3/3]

CS 677: Big Data 18

▪ AP systems: highly available

▪ Can result in inconsistent views of the dataset

▪ Shopping cart

▪ CP systems: highly consistent

▪ Can experience downtime if a partition occurs

▪ That’s okay, because we’re assuming it’s better to

be offline than cause inconsistencies!

▪ Billing system

CAP Classifications

CS 677: Big Data 19

Consistency-Latency Tradeoff

CS 677: Big Data 20

▪ Failures and Replication

▪ Reaching Consensus

▪ Consensus as a Service

Today’s Schedule

CS 677: Big Data 21

▪ There are two popular ways to get nodes to agree on

something:

▪ Paxos

▪ Raft

▪ We’re not a distributed systems class, so we won’t go

into these in depth (or build them)

▪ Advice for 99% of situations: don’t invent your own

algorithm, ignore Paxos, and use a Raft library

Reaching Consensus

CS 677: Big Data 22

▪ Described in The Part Time Parliament by Leslie

Lamport

▪ Describes a fictional parliamentary consensus protocol

used by legislators in Paxos, Greece

▪ Took around 10 years to get published… it was a bit

unconventional

▪ Used frequently to achieve distributed consensus

▪ Really, really hard to get right

Paxos

CS 677: Big Data 23

▪ Raft is an attempt to build a more understandable

consensus algorithm

▪ Each component can be explained in isolation

▪ Leader, candidate, follower

▪ Uses strong leaders

▪ One leader per term

▪ When a failed node comes back up, it assumes that it

is a follower and waits for a timeout rather than trying

to become a leader immediately

▪ Each leader election increments the term number

Raft

CS 677: Big Data 24

Raft: Components and Flow

CS 677: Big Data 25

▪ Failures and Replication

▪ Reaching Consensus

▪ Consensus as a Service

Today’s Schedule

CS 677: Big Data 26

▪ Zookeeper is often used to coordinate between

components and detect failures

▪ Supports atomic broadcast, where not only consensus

must be reached but event ordering matters

▪ ZAB

▪ Three phases: discovery, synchronization, broadcast

Zookeeper Atomic Broadcast

CS 677: Big Data 27

▪ Chubby is used to coordinate between components at

Google

▪ Locking, name services, config store

▪ Partially inspired by the VMS operating system

▪ General purpose, global lock service

▪ Provides coarse-grained locking capabilities and simple

storage facilities

▪ Based on a file system model

Chubby

CS 677: Big Data 28

“Chubby is intended to operate within a single company,

and so malicious denial-of-service attacks against it are

rare. However, mistakes, misunderstandings, and the

differing expectations of our developers lead to effects

that are similar to attacks.”

– Mike Burrows,

Google, Inc.,

The Chubby lock service for loosely-coupled distributed

systems

Chubby

CS 677: Big Data 29

Overview

CS 677: Big Data 30

▪ An example: /ls/foo/wombat/pouch

▪ ls – ‘lock service’

▪ foo – the chubby cell, or instance of the system

▪ Found via DNS lookup

▪ wombat/pouch – directory and file name

▪ Files are just arrays of bytes

File System Interface

CS 677: Big Data 31

▪ As mentioned, incorrectly using Chubby is similar to an

attack

▪ Initially, the system had no storage quotas

▪ Not intended for a data store

▪ Used for one anyway… 1.5 MB file rewritten for every

client action

▪ Publish/subscribe

▪ Can be used to publish changes, but not the intended

use case

Abusive Clients

CS 677: Big Data 32

▪ Developers rarely consider availability

▪ Chubby outages have caused cascading effects!

▪ Be careful with API design expectations

▪ The system provides an event notification when a

master failover occurs

▪ Should help developers know that they need to

verify the most recent actions

▪ Instead, most applications decided to just crash

▪ Developers want to use their own favorite language

Lessons Learned

CS 677: Big Data 33

▪ For a long time, storage systems made all kinds of

outlandish claims

▪ Check out Jepsen by Kyle Kingsbury:

▪ https://aphyr.com/tags/jepsen

▪ https://jepsen.io

▪ Breaks down systems’ consistency claims

▪ Even includes illustrations!

Call Me Maybe: Jepsen

CS 677: Big Data 34

https://aphyr.com/tags/jepsen
https://jepsen.io/

