CS 677 Big Data

Distributed Hash Tables

Lecture 7



Today's Schedule

Distributed Lookups
Distributed Hash Tables
Chord

Zero-Hop DHTs, Eventual Consistency

Replication Strategies

Hotspots, Heterogeneity, Sybil Attacks

CS 677:Big Data



Today's Schedule

Distributed Lookups
Distributed Hash Tables
Chord

Zero-Hop DHTs, Eventual Consistency

Replication Strategies

Hotspots, Heterogeneity, Sybil Attacks

CS 677:Big Data



Recap: Distributed Lookups

We've discussed a few approaches for finding data in
our system

HDFS: The NameNode
= Orin our DES, the controller

Napster: central catalog
= Implemented as a database

Gnutella: completely decentralized, flood to peers

We need some way to map: file => node

CS 677:Big Data



Shortcomings

A central index component means a single point of

failure
Failover schemes can help

Scalability is an issue for both approaches
Single index: all requests funneled through

Flooding: excessive communication

Security implications
Paint a giant target on your central component

CS 677:Big Data



An Alternative: Hierarchies

Spreading global state across multiple nodes helps

alleviate these issues
No single point of failure, better scalability, etc.

Lots of real-world examples

The downside: this can be difficult!
How do we keep state consistent?
Do we still keep a “root” node that contains a copy of
everything? Why or why not?

There is another alternative!

CS 677:Big Data



Today's Schedule

Distributed Lookups

Distributed Hash Tables

Chord

Zero-Hop DHTs, Eventual Consistency
Replication Strategies

Hotspots, Heterogeneity, Sybil Attacks

CS 677:Big Data



Distributed Hash Tables

Another alternative is Distributed Hash Tables
DHTs

Decentralized

Storage and retrieval are handled by the same
deterministic algorithm

Supports put(k, v) and get(k)

Also used to place replicas

Near-uniform load balancing

CS 677:Big Data



DHTs in a Nutshell

DHTs are just like the hash table data structures we use

(and abuse) all the time
Except whenyou put() something into the DHT, it's
being stored on one of the nodes in the cluster

We take a hash algorithm such as MD5 or SHA-1 and

look at its complete hash space
MD5: 128 bits = 2128 unique keys

SHA-1: 160 bits = 2160 unique keys

CS 677:Big Data



The Hash Space

We represent our hash algorithm’'s hash space as a
circle
In a DHT, there isn't really a "start” or "end” of the hash
space
Next, we assign nodes to be responsible for particular

portions of the hash space
Each file is mapped to the hash space and falls under
a single node’s purview

Creates an overlay network — like our ring topology

CS 677:Big Data 10



Consistent Hashing

Breaking up the hash space in this way is a form of
consistent hashing

When the hash table is resized (adding or removing a

node), generally K/n keys must be remapped:
K —number of keys

n —number of nodes

Contrasts with basic hashing schemes, such as using
hash(o)%mn to determine file destinations

CS 677:Big Data

11



DHT Overview: Storage

g —) Hash(Mr_Fluffers.jpg) —) 0x88F6670DBEAS9

ool

CS 677:Big Data

12



DHT Overview: Retrieval

g Hash(Mr_Fluffers.jpg) —) 0x88F6670DBEAS9

mz@@ O

CS 677:Big Data

13



DHTs, The Good and Bad

= Good:
= Highly scalable, decentralized, no bottlenecks

- Finding data takes O(log m) hops, where n is the
number of nodes

= Uniform load distribution
= Bad:
= Exact key required for retrieval

= Queries on values not possible
= (bad for document-oriented databases)

CS 677:Big Data

14



Data Placement

= Inapure DHT, file placement

is basically random
= (Great for keeping
things balanced

Data Distribution (SHA-1 Hash)

B
(=]

w
n

w
=)
\

= Alternatives:
= Design a hash function

N
U

that maintains order

=
%]

(user 2 comes after

Percentage of Total System Data
N
[=]

=
o

user 1)

o
U

= Use just a portion of
the file name / path

Node

CS 677:Big Data 15



Routing Content in a

DHT [1/2]

= Chord, Pastry

= Prefix routing: Routes for delivery of messages based
on values of GUIDs to which they are addressed

= CAN

= Uses distance in a d-dimensional hyperspace into

which nodes are placed

= Kademlia

= Uses XOR of pairs of GUIDs as a metric for distance

between nodes

CS 677:Big Data

16



Routing Content in a DHT [2/2]

= Cassandra
= Avariety of hash functions are supported:

= MD5
= Order-preserving

= ...and the initial placement of nodes can be balanced

CS 677:Big Data 17



Basic Routing Strategy

No matter what algorithm, there are generally two key

rules to follow when routing in a DHT:

Each hop through the network gets you a bit closer
In other words, do not overshoot

Remember, our hash space wraps back around

Routing goes one way only
Can be clockwise or counter-clockwise, but not
both!

CS 677:Big Data 18



Routing Table Terminology

Each node ina DHT maintains a routing table with a

limited view of the network
Only a small amount of state is maintained

In some systems the routing table is also called the
finger table

Predecessor — previous active node in the overlay

successor — next active node in the overlay

CS 677:Big Data 19



Moving On

Let’s take a look at one way to implement a DHT...

CS 677:Big Data

20



Today's Schedule

Distributed Lookups
Distributed Hash Tables
Chord

Zero-Hop DHTs, Eventual Consistency

Replication Strategies

Hotspots, Heterogeneity, Sybil Attacks

CS 677:Big Data

21



Chord

In Chord, both node IDs and file IDs are mapped to the
same hash space

Each node is responsible for an ID range:
Its own ID up to its predecessor's ID

When placing data with key k, locate node n where:
min(id(n) >= k)
(find the smallest numbered node that is greater than
or equal to k)

We also track /N — number of nodes in the system

CS 677:Big Data 22



24 Network

CS 677:Big Data

23



24 Network:

Populated

= What keys are

node 2 responsible
for?

= Node 107?

CS 677:Big Data

24



Joining the Network

Generate an ID using the current timestamp
Helps reduce collisions

An alternative: hash the hostname
This can lead to problems. Why?

Let's say hash(timestamp) = 5
We need to contact 2 nodes to join: the successor
and the predecessor

CS 677:Big Data

25



Joining the Network, 1D =5

- First, lookup(our_id)
. =17
= Letnode 7 know we're
entering the network

= Ask node 7 for its

predecessor
= (2 becomes our
predecessor)

CS 677:Big Data 26



Joining the Network

{15, 14, 13}

= This approach
minimizes
communication
between nodes

12, 11
« Node 10, for 21
Instance, was
not involved at all

= What about
routing tables?

CS 677:Big Data

27



Updating Routing Tables

We do need to keep the routing tables up to date
However, remember our rule: no overshooting!

In the worst case scenario (no routing information), our
DHT becomes a ring topology
All next hops are set to your successor

To find out where data goes, do a lookup. Then update
your routing table if you discovered a new node in the
Process

CS 677:Big Data

28



The Finger Table

Each node maintains a finger table, which contains the

successor, predecessor, and a few nearby nodes
Maintaining more than just our direct neighbors is
what makes this approach more efficient than a
simple ring topology!

If we have a 4-bit identifier space (for a total of 24 =16
nodes), each table contains 4 routing entries

Route[i] =lookup(my _node id + 275)

CS 677:Big Data 29



Demo Routing Table: 2* Network, ID = 5

= Route[1]

- = lookup(ID + 2Y)
= Route[0] =

- lookup(5 +2°) =17
= Route[1l] =

- lookup(b +2') =7
= Route[2] =

- lookup(b + 2%) = 10
= Route[3] =

- lookup(5 +23) = 15

{12, 11}

CS 677:Big Data

30



Routing Requests: 1D = 14

CS 677:Big Data

31



Routing Requests: 1D =9

CS 677:Big Data

32



Routing Tables

CS 677:Big Data

33



Today's Schedule

Distributed Lookups

Distributed Hash Tables

Chord

Zero-Hop DHTSs, Eventual Consistency
Replication Strategies

Hotspots, Heterogeneity, Sybil Attacks

CS 677:Big Data

34



Other Approaches

Taking multiple hops through the network can incur varying

amounts of latency
Some applications want to hit more constant latencies

In an internal system (completely administered by one
organization), it's possible to know more about the network
layout

In these cases a Zero-Hop DHT works in the same way, except
every node has the entire routing table

Coral CDN — uses a hierarchy of DHTs to load balance between
clusters

CS 677:Big Data

35



Zero-Hop DHTs [1/2]

When nodes enter and leave the network in a controlled
manner, zero-hop DHTs may be a good fit

O(1) routing hops rather than O(log n)

Every node must maintain an entire copy of the routing
table

Synchronous updates are not required

If an old route is used, just forward the request to the
correct node

Node down? Try the predecessor

CS 677:Big Data

36



Zero-Hop DHTs [2/2]

Zero-Hop DHTs are a great example of finding a
compromise in the middle

Retain many good aspects of regular DHTs, but are also
easier to implement

May sacrifice some scalability, but in general they
target a different use case

Some implementations: Dynamo, Cassandra, Riak
Dynamo: Amazon & SLAS

CS 677:Big Data 37



GlusterkFS

Unlike most of the distributed file systems we've

surveyed, GlusterFS is actually mountable as a Unix FS
Backed by Zero-Hop DHT

Hashes directory ID + file ID to place/locate files

When we use a regular file system, move operations are
common

When the usual lookup fails, broadcast to everyone
Supports linkfiles, which are essentially a symlink to
redirect lookup requests to another node

Great for dealing with file migrations

CS 677:Big Data 38



—ventual Consistency [1/2]

Joining or leaving the
Chord network causes
inconsistency

In this example, it may 'm your new
SUCCESSOV.

take a bit for node 15

to learn about node 5 I'm your new

predecessor.

Give me {5, 4, 3}

The system will
eventually reach a
steady state (usually
INn Ms)

CS 677: Big Data

39



—ventual Consistency [2/2]

Eventual consistency is a mainstay of distributed
systems

It's easier to accept that things will be inconsistent
(sometimes) rather than trying to prevent it

Amazon: shopping cart vs billing
You can often achieve much better performance if you

relax consistency
But remember to ask yourself: are your
customers/clients okay with that?

CS 677:Big Data 40



Today's Schedule

Distributed Lookups

Distributed Hash Tables

Chord

Zero-Hop DHTs, Eventual Consistency
Replication Strategies

Hotspots, Heterogeneity, Sybil Attacks

CS 677:Big Data

41



Replication

We've seen from the HDFS paper that maintaining 3

total copies of each file is our gold standard
In some situations, 5 is warranted

...And sometimes having O copies is the way to go ‘&

It's always worth thinking about the cost of maintaining
these, though

How do we do replication in DHTs?

CS 677:Big Data 42



Replicate to Successors

= Send a copy to R
successors

= If Node 5 goes down,
Node 7 will take its load
= Great! Promote
replica to primary file
= Doesn't account for
query traffic, physical
locations, etc.

CS 677:Big Data 43



Query Paths

Rather than replicating immediately to a certain set of
nodes, wait for queries to come in
Cache the replicas at nodes that forwarded the query

Reduces the latency of frequent queries that originate
at the same node

Let's say my client always contacts the node in San

Francisco, which then retrieves from a node in Texas
Store areplica in Sk

Better for query performance, not absolute safety

CS 677:Big Data 44



Salting

For each file, add a salt
Random data used as an additional input to the hash
function

SALT_REPLICAT = "Hi there!”
SALT_REPLICA2 = "What what what"

out(key + SALT_REPLICA1, value)

Now we can deterministically locate the replicas
associated with a key

CS 677:Big Data

45



Today's Schedule

Distributed Lookups

Distributed Hash Tables

Chord

Zero-Hop DHTs, Eventual Consistency
Replication Strategies

Hotspots, Heterogeneity, Sybil Attacks

CS 677:Big Data

46



Avoliding Hotspots

Our cluster may be heterogeneous or have hotspots
that receive a disproportionate amount of load

To help fill in the gaps and even out the load, nodes may

be required to initially represent several IDs
Used frequently in large deployments — hundreds of
IDs are assigned to each node

Allows variations on the default load level: new node
could take on 1.2 nodes’ worth of keys

CS 677:Big Data 47



Overloaded, Lonely Node 5

CS 677:Big Data

48



Cassandra: VNodes

CS 677:Big Data

Ring with

VNodes

Node 4

Node 5

Node 6

49



VNodes

With virtual nodes, each physical host is responsible for
many more portions of the overall hash space

Common approach: randomize the vnode locations

More coverage means less of a chance that one node
gets stuck with too much load

But wait, wasn't localizing network changes one of the
pros of using DHTs?
Yes. But more coverage can be a good thing too.

CS 677:Big Data 50



Replacing Node 5 (No VNodes)

CS 677:Big Data

51



Replacing Node 5 (With VNodes)

52

CS 677:Big Data



VNodes: Pros and Cons

= VNode pros:
= Better load balancing properties

= Better parallelism when recovering
= VNode cons:

= Less localized faults: loss of a single node is
dispersed across the hash space

= Many more nodes participating in recovery means
less resources for answering queries

CS 677:Big Data

53



Dealing with Heterogeneity

What we've discussed thus far assumes uniform
hardware capabilities

How can we account for newer, better hardware?
Let's not go with the HDFS approach of throwing them
in the garbage &

New nodes can advertise as several nodes

Maybe the next-gen machines each get assigned two
places in the hash ring

CS 677:Big Data 54



Sybil Attacks

Outside a controlled environment, DHTs are susceptible
to Sybil Attacks
Dissociative identity disorder
Attacker masquerades as a huge number of false
identities
Given enough control of the network, data and routing
tables can be manipulated
Prevention: central login service, reverse lookup,
vouching for other nodes

CS 677:Big Data 55



