CS 677: Big Data

Data Models

Lecture 8

Today's Schedule

= Data Models

= Data Access

CS 677:Big Data

A Bit of History

~1970: relational databases
SQL, relational models

~2009: surge in popularity of “NoSQL" systems
Relaxed consistency, de-emphasizing transactions,
new data models

~2012: "NewSQL" systems
Tabular data model, ACID support, but built on
distributed principles

CS 677:Big Data

What's the Best Approach?

As usual, it depends.

If you have small, structured data then a relational

database is your best option
Generally these don't scale well, though!

If you need to scale out massively, then choose a
NoSQL storage system

If you need good scalability and the flexibility of a
relational database, NewSQL might be the way to go

CS 677:Big Data

Representing our Data

We've discussed quite a few systems thus far

Why? Because when you're dealing with big data, you
often design systems rather than schemas

General-purpose databases are a good start but begin
to be a bottleneck once scaling is necessary

Choosing a data model means choosing between
trade-offs

CS 677:Big Data

Today's Schedule

= Data Models

= Data Access

CS 677:Big Data

Data Models

= Key-value
= Document
= Tabular

= Graph

CS 677:Big Data

Key-Value stores

= Data model similar to a hash table
= Flat namespace

= Simple functionality
= Put(key, value)

= Get(key)

= No query/search support

= Frequent uses:
= General (file) storage

= Object caches

= Common theme: you don't care what is inside the files

CS 677:Big Data

Key-Value Data Model

Mr_Fluffers. jpg

CS 677:Big Data

Key-Value

Data Model

CS 677:Big Data

Mr_Fluffers. jpg

Mr_Fluffers. jpg

01000101111000010
10101001011110100
01010101010001110
01000010010101001

10

Key-Value

Data Model

CS 677:Big Data

(Key)

Mr_Fluffers. jpg

Mr_Fluffers. jpg

—

(Value)

01000101111000010
10101001011110100
01010101010001110
01000010010101001

11

Content-Addressable Storage

= |[n some cases you don't want to store data with a file
name or identifier

= With CAS, just use the content’s hash key directly
= put(my_file.txt) E3 0x123456789

= Use cases:
= Preventing duplicate data from being stored

= Verifying the integrity of documents

= Pulling in file updates

CS 677:Big Data

12

Choose Key-Value When:

You don't need to know what the files contain

You don't need an index
(This can be provided separately, though)

You won't be doing range queries over the data
You want extreme scalability

You want to be able to easily cache + replicate data

CS 677:Big Data

13

ocument Store

Data Model

(Key/Identifier)

matthew.json

stark.json

CS 677:Big Data

—>

—>

(Document)

“name”: “Matthew Malensek”,
“locale”: “en-US.UTF-8”,
“status”: “Teaching”,
“location”: “HR 148,

“name”: “Tony Stark”,
“alias”: “Iron Man”,
“administrator”: true,
“status”: “Saving the World”,

14

Document Stores

Often represented using JSON, YAML, etc.

Beyond key-value semantics, document stores also
allow content-aware searches

Support a wide variety of data types
Serialization formats, multidimensional arrays

Generally use inverted indexes to support queries

Index options:
Domain-specific indexer

Automatic based on text (JSON, XML)

CS 677:Big Data

15

Other

Document Types

= We are all familiar with JSON and XML

= Scientific document types:
= NetCDF (from Unidata)
- HDF5

= GRIB (World Meteorological Organization)

= And of course, plain text, ODF, .doc(x)

CS 677:Big Data

16

Choose Document Storage When:

= You need the system to be aware of the file contents

= The data is mostly schemaless

= May contain different sets of fields
= Things change...

= Thisis as "real world" as it gets

= Your application (client side or server side) expects a

particular data format
= e.g., it only operates on NetCDF files

CS 677:Big Data 17

Tabular Storage

This is the most popular data model

Variants:

Row Stores

Column Stores

DataFrames
Some examples: Parquet, ORCFile, Resilient Distributed
Datasets (RDDs), and many languages/frameworks have
their own DataFrame implementation...

CS 677:Big Data

18

Tabular Storage

Matthew 1625 W Oak St (970) 379-4929 2/27/22
Michelle NULL (327)876-5309 11/16/81
Bob 1600 Pennsylvania Ave (202) 456-1111 08/04/61

CS 677:Big Data

19

Row Stores

Densely populated tables (relations)
No data? Insert NULL inits place

-~
o0
-

Fixed set of data types
Schema does not frequently change

Caveats:
All tables must have at least one primary key column

Data partitioning is often explicit

CS 677:Big Data

20

Choose Row Stores when:

You want the entire record

If I look up user 1398, | want to see their address,
name, etc.

You have well-defined ways to get the records you want:

lookups should be straightforward
Try to avoid expensive distributed operations such as

joins
You won't be accessing a single column across all
records

CS 677:Big Data

21

Column Stores [1/2]

Multidimensional key-value stores
Values are arbitrary byte arrays

Can be sparsely populated

A row key references a set of column families
Writes under a row key are atomic

Keys are stored in lexicographic order to facilitate
scanning across records

Often include column-based versioning

CS 677:Big Data

22

Column Stores [2/2]

Useful when analyzing one or two dimensions or
features at a time

Optimized for selecting columns, not entire records
Affords more flexibility: can allow document-style ad-
hoc feature columns

Sparse representation
Another way to think about column stores: they're more
or less just hierarchical key value stores

CS 677:Big Data 23

Column Store Data Model

Column
Family
1 "contents:" "anchor:cnnsi.com” "anchor:my.look.ca"
1 - - 1 .
11:} ______

"com.cnn.www" —|

v \
Versions

Sorted alphabetically

Source: Chang et al., “Bigtable: A Distributed Storage System for Structured Data”

CS 677: Big Data

24

Use Column Stores When:

= You can analyze one feature at a time
= You want to explore the relationships between features

= You need sparse representation or flexibility in what the
column families contain

CS 677:Big Data

25

DatakFrames

In recent years, multidimensional data is often
represented as DataFrames

Very similar to the tabular data model but designed for
machine learning and data mining use cases

Dimensions are usually columns, rows are
observations/samples/entries

R, Pandas, Spark, etc. use this abstraction

Schema is not as strictly defined: might be ascertained
when loading/importing the data for the first time

CS 677:Big Data

26

Joins

Joins are expensive
What is a join" again?

Distributed joins are even more expensive
Computational cost + latency

Your two options:
Avoid at all costs

Design your entire system around joins

Why mention this? Many of the traditional database
design approaches make frequent use of joins!

CS 677:Big Data

27

Graph Stores

G=(V,E)
Vertices: nodes in the graph
Edges: links between the nodes
Graph stores represent data as relationships modeled as a collection of

vertices and edges
Can store data in both vertices and edges

Query via DSL or SQL
Relational databases provide some level of graph support: links between

entities via foreign keys
Fairly restrictive

BAD performance on large graphs

CS 677:Big Data

28

Graph Partitioning

One primary concern with graph storage systems is
figuring out how to partition the graph

A nalve approach: hash or randomize the vertex (hode)
placement, and then use network connections for the
edges

This works, but adds latency
Better: co-locate similar vertices to reduce

communications to separate physical machines
Similar could mean: graph distance, physical
(geographical) distance, etc...

CS 677:Big Data 29

—dge Cut:

2 Partitions

(a) Actual Graph

= Which partition? v

(b) Partitioned Graph: Edge-Cut

= v:vertex ID; n: number of partitions

= Some edges span both partitions (red)

= These are duplicated

CS 677: Big Data

Vertex Cut: 2 Partitions

(a) Actual Graph (b) Partitioned Graph: Vertex-Cut

WVs+ V) %n

(25 S 5 E}
(4

OOk

00Cs

= Which partition? (Usource + 'Udestination)
= Eg., (1,3) =>4 => Partition 2
(1, 2) => 3 => Partition 1

= Some vertices span both partitions (red) — Virtual nodes

CS 677: Big Data

Choose Graph Stores When:

= The relationships between data points matter
= This applies to a surprising amount of datasets

= Mining interactions between entities
= Facebook, Twitter, etc.
= Social media = graphs!
Adding a friend = edge in the graph

= You don't often need the data in tabular format

= Transforming from a graph back to rows can be costly
= How do you know what features are available? Not all
vertices might have the same attributes

CS 677:Big Data

32

Today's Schedule

= Data Models

= Data Access

CS 677:Big Data

33

—asy Access: Key-Value

First, let's talk about the easy ways to allow users to
access data from our data models

Key-value storage: user is required to provide a key
We can also let the user search through an index of
keys, but this is usually more expensive

Only useful if searches are infrequent
Store keys in order (e.g., alphabetical, geospatial):

allows targeted lookups
Imagine sorting file names or keys across a DHT
(this is what FB's Cassandra does)

CS 677:Big Data 34

Modified Key-Value Retrieval

= For column storage, you have embedded key-value lookups
within a row

= The workflow: find the row key you want, then select column

families of interest, keep drilling down
= getRow("alice").getColFamily("address").getCol("city")

= => San Francisco

= Many systems provide a nicer interface for doing this (domain
specific languages)

CS 677:Big Data

35

Query Languages

We can take the hierarchical key-value lookup system

and translate SQL-like queries to it
This can be restricted to maintain good performance,

or fancy features like joins can be allowed at the cost
of latency

Another approach: Apache Pig (based on Google
Sawzall) is a procedural language that translates to
distributed computations

Row and column stores can support variants of SQL

CS 677:Big Data 36

Pig Wordcount

input_lines = LOAD '/tmp/all-pages-on-internet' AS (line:chararray);
-— Extract words from each line and put them into a pig bag

-— datatype, then flatten the bag to get one word on each row

words = FOREACH input_lines GENERATE FLATTEN(TOKENIZE(line)) AS word;

-— filter out any words that are just white spaces
filtered_words = FILTER words BY word MATCHES '\\w+’;

-— create a group for each word
word_groups = GROUP filtered_words BY word;

-— count the entries in each group
word_count = FOREACH word_groups GENERATE COUNT(filtered_words) AS count, group AS word;

-— order the records by count

ordered_word_count = ORDER word_count BY count DESC;
STORE ordered_word_count INTO '/tmp/number-of-words-on-internet';

CS 677:Big Data

37

Document Query: GraphQL

{
human(id: "1000") {
name
height
¥
}
= Returns
{
"data'": {
"human": {
"name'": "Luke Skywalker'",
"height": 1.72
}
¥
}

CS 677:Big Data

38

Graph DSL: Gremlin

Apache TinkerPop: the go-to for graphs

// What are the names of Gremlin's friends' friends?
g.V().has("name","gremlin")
.out("knows").out("knows").values("name")

// Get a ranking of the most relevant products for Gremlin
// given his purchase history.
g.V().has("name","gremlin").out("bought").aggregate("stash")
.in("bought").out("bought")
.where(not(within("stash")))
.groupCount()
.order(local).by(values, desc)

CS 677:Big Data

39

Wrapping Up

These models influence both storage and retrieval

Simple data models can allow increased automation;
the system can do more for you when the data is simple!

Well-defined schemas provide greater query flexibility
but require more configuration

Strong consistency is most common when records are
fine-grained
Way easier to lock!

CS 677:Big Data 40

