
Data Models

CS 677: Big Data

Lecture 8

▪ Data Models

▪ Data Access

Today’s Schedule

CS 677: Big Data 2

▪ ~1970: relational databases

▪ SQL, relational models

▪ ~2009: surge in popularity of “NoSQL” systems

▪ Relaxed consistency, de-emphasizing transactions,

new data models

▪ ~2012: “NewSQL” systems

▪ Tabular data model, ACID support, but built on

distributed principles

A Bit of History

CS 677: Big Data 3

▪ As usual, it depends.

▪ If you have small, structured data then a relational

database is your best option

▪ Generally these don’t scale well, though!

▪ If you need to scale out massively, then choose a

NoSQL storage system

▪ If you need good scalability and the flexibility of a

relational database, NewSQL might be the way to go

What’s the Best Approach?

CS 677: Big Data 4

▪ We’ve discussed quite a few systems thus far

▪ Why? Because when you’re dealing with big data, you

often design systems rather than schemas

▪ General-purpose databases are a good start but begin

to be a bottleneck once scaling is necessary

▪ Choosing a data model means choosing between

trade-offs

Representing our Data

CS 677: Big Data 5

▪ Data Models

▪ Data Access

Today’s Schedule

CS 677: Big Data 6

▪ Key-value

▪ Document

▪ Tabular

▪ Graph

Data Models

CS 677: Big Data 7

▪ Data model similar to a hash table

▪ Flat namespace

▪ Simple functionality

▪ Put(key, value)

▪ Get(key)

▪ No query/search support

▪ Frequent uses:

▪ General (file) storage

▪ Object caches

▪ Common theme: you don’t care what is inside the files

Key-Value Stores

CS 677: Big Data 8

Key-Value Data Model

CS 677: Big Data 9

Key-Value Data Model

CS 677: Big Data 10

Key-Value Data Model

CS 677: Big Data 11

▪ In some cases you don’t want to store data with a file

name or identifier

▪ With CAS, just use the content’s hash key directly

▪ put(my_file.txt) 0x123456789

▪ Use cases:

▪ Preventing duplicate data from being stored

▪ Verifying the integrity of documents

▪ Pulling in file updates

Content-Addressable Storage

CS 677: Big Data 12

▪ You don’t need to know what the files contain

▪ You don’t need an index

▪ (This can be provided separately, though)

▪ You won’t be doing range queries over the data

▪ You want extreme scalability

▪ You want to be able to easily cache + replicate data

Choose Key-Value When:

CS 677: Big Data 13

Document Store Data Model

CS 677: Big Data 14

▪ Often represented using JSON, YAML, etc.

▪ Beyond key-value semantics, document stores also

allow content-aware searches

▪ Support a wide variety of data types

▪ Serialization formats, multidimensional arrays

▪ Generally use inverted indexes to support queries

▪ Index options:

▪ Domain-specific indexer

▪ Automatic based on text (JSON, XML)

Document Stores

CS 677: Big Data 15

▪ We are all familiar with JSON and XML

▪ Scientific document types:

▪ NetCDF (from Unidata)

▪ HDF5

▪ GRIB (World Meteorological Organization)

▪ And of course, plain text, ODF, .doc(x)

Other Document Types

CS 677: Big Data 16

▪ You need the system to be aware of the file contents

▪ The data is mostly schemaless

▪ May contain different sets of fields

▪ Things change…

▪ This is as “real world” as it gets

▪ Your application (client side or server side) expects a

particular data format

▪ e.g., it only operates on NetCDF files

Choose Document Storage When:

CS 677: Big Data 17

▪ This is the most popular data model

▪ Variants:

▪ Row Stores

▪ Column Stores

▪ DataFrames

▪ Some examples: Parquet, ORCFile, Resilient Distributed

Datasets (RDDs), and many languages/frameworks have

their own DataFrame implementation…

Tabular Storage

CS 677: Big Data 18

Tabular Storage

CS 677: Big Data 19

▪ Densely populated tables (relations)

▪ No data? Insert NULL in its place

▪

▪ Fixed set of data types

▪ Schema does not frequently change

▪ Caveats:

▪ All tables must have at least one primary key column

▪ Data partitioning is often explicit

Row Stores

CS 677: Big Data 20

▪ You want the entire record

▪ If I look up user 1398, I want to see their address,

name, etc.

▪ You have well-defined ways to get the records you want:

lookups should be straightforward

▪ Try to avoid expensive distributed operations such as

joins

▪ You won’t be accessing a single column across all

records

Choose Row Stores when:

CS 677: Big Data 21

▪ Multidimensional key-value stores

▪ Values are arbitrary byte arrays

▪ Can be sparsely populated

▪ A row key references a set of column families

▪ Writes under a row key are atomic

▪ Keys are stored in lexicographic order to facilitate

scanning across records

▪ Often include column-based versioning

Column Stores [1/2]

CS 677: Big Data 22

▪ Useful when analyzing one or two dimensions or

features at a time

▪ Optimized for selecting columns, not entire records

▪ Affords more flexibility: can allow document-style ad-

hoc feature columns

▪ Sparse representation

▪ Another way to think about column stores: they’re more

or less just hierarchical key value stores

Column Stores [2/2]

CS 677: Big Data 23

Column Store Data Model

CS 677: Big Data 24

▪ You can analyze one feature at a time

▪ You want to explore the relationships between features

▪ You need sparse representation or flexibility in what the

column families contain

Use Column Stores When:

CS 677: Big Data 25

▪ In recent years, multidimensional data is often

represented as DataFrames

▪ Very similar to the tabular data model but designed for

machine learning and data mining use cases

▪ Dimensions are usually columns, rows are

observations/samples/entries

▪ R, Pandas, Spark, etc. use this abstraction

▪ Schema is not as strictly defined: might be ascertained

when loading/importing the data for the first time

DataFrames

CS 677: Big Data 26

▪ Joins are expensive

▪ What is a ‘join’ again?

▪ Distributed joins are even more expensive

▪ Computational cost + latency

▪ Your two options:

▪ Avoid at all costs

▪ Design your entire system around joins

▪ Why mention this? Many of the traditional database

design approaches make frequent use of joins!

Joins

CS 677: Big Data 27

▪
▪ Vertices: nodes in the graph

▪ Edges: links between the nodes

▪ Graph stores represent data as relationships modeled as a collection of

vertices and edges

▪ Can store data in both vertices and edges

▪ Query via DSL or SQL

▪ Relational databases provide some level of graph support: links between

entities via foreign keys

▪ Fairly restrictive

▪ BAD performance on large graphs

Graph Stores

G = (V ,E)

CS 677: Big Data 28

▪ One primary concern with graph storage systems is

figuring out how to partition the graph

▪ A naïve approach: hash or randomize the vertex (node)

placement, and then use network connections for the

edges

▪ This works, but adds latency

▪ Better: co-locate similar vertices to reduce

communications to separate physical machines

▪ Similar could mean: graph distance, physical

(geographical) distance, etc…

Graph Partitioning

CS 677: Big Data 29

▪ Which partition?

▪ : vertex ID; : number of partitions

▪ Some edges span both partitions (red)

▪ These are duplicated

Edge Cut: 2 Partitions

v
v n

CS 677: Big Data 30

▪ Which partition?

▪ E.g., (1, 3) => 4 => Partition 2

(1, 2) => 3 => Partition 1

▪ Some vertices span both partitions (red) – Virtual nodes

Vertex Cut: 2 Partitions

(v +source v)destination

CS 677: Big Data 31

▪ The relationships between data points matter

▪ This applies to a surprising amount of datasets

▪ Mining interactions between entities

▪ Facebook, Twitter, etc.

▪ Social media = graphs!

Adding a friend = edge in the graph

▪ You don’t often need the data in tabular format

▪ Transforming from a graph back to rows can be costly

▪ How do you know what features are available? Not all

vertices might have the same attributes

Choose Graph Stores When:

CS 677: Big Data 32

▪ Data Models

▪ Data Access

Today’s Schedule

CS 677: Big Data 33

▪ First, let’s talk about the easy ways to allow users to

access data from our data models

▪ Key-value storage: user is required to provide a key

▪ We can also let the user search through an index of

keys, but this is usually more expensive

▪ Only useful if searches are infrequent

▪ Store keys in order (e.g., alphabetical, geospatial):

allows targeted lookups

▪ Imagine sorting file names or keys across a DHT

(this is what FB’s Cassandra does)

Easy Access: Key-Value

CS 677: Big Data 34

▪ For column storage, you have embedded key-value lookups

within a row

▪ The workflow: find the row key you want, then select column

families of interest, keep drilling down

▪ getRow("alice").getColFamily("address").getCol("city")

▪ => San Francisco

▪ Many systems provide a nicer interface for doing this (domain

specific languages)

Modified Key-Value Retrieval

CS 677: Big Data 35

▪ We can take the hierarchical key-value lookup system

and translate SQL-like queries to it

▪ This can be restricted to maintain good performance,

or fancy features like joins can be allowed at the cost

of latency

▪ Another approach: Apache Pig (based on Google

Sawzall) is a procedural language that translates to

distributed computations

▪ Row and column stores can support variants of SQL

Query Languages

CS 677: Big Data 36

input_lines = LOAD '/tmp/all-pages-on-internet' AS (line:chararray);
-- Extract words from each line and put them into a pig bag
-- datatype, then flatten the bag to get one word on each row
words = FOREACH input_lines GENERATE FLATTEN(TOKENIZE(line)) AS word;

-- filter out any words that are just white spaces
filtered_words = FILTER words BY word MATCHES '\\w+’;

-- create a group for each word
word_groups = GROUP filtered_words BY word;

-- count the entries in each group
word_count = FOREACH word_groups GENERATE COUNT(filtered_words) AS count, group AS word;

-- order the records by count
ordered_word_count = ORDER word_count BY count DESC;
STORE ordered_word_count INTO '/tmp/number-of-words-on-internet';

Pig Wordcount

CS 677: Big Data 37

{
 human(id: "1000") {
 name
 height
 }
}

▪ Returns

{
 "data": {
 "human": {
 "name": "Luke Skywalker",
 "height": 1.72
 }
 }
}

Document Query: GraphQL

CS 677: Big Data 38

Apache TinkerPop: the go-to for graphs

// What are the names of Gremlin's friends' friends?
g.V().has("name","gremlin")
 .out("knows").out("knows").values("name")

// Get a ranking of the most relevant products for Gremlin
// given his purchase history.
g.V().has("name","gremlin").out("bought").aggregate("stash")
 .in("bought").out("bought")
 .where(not(within("stash")))
 .groupCount()
 .order(local).by(values, desc)

Graph DSL: Gremlin

CS 677: Big Data 39

▪ These models influence both storage and retrieval

▪ Simple data models can allow increased automation;

the system can do more for you when the data is simple!

▪ Well-defined schemas provide greater query flexibility

but require more configuration

▪ Strong consistency is most common when records are

fine-grained

▪ Way easier to lock!

Wrapping Up

CS 677: Big Data 40

